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Executive Summary 

Due to the rapid increase in travel demands, traffic in recent years is getting more and more 

congested (Papageorgiou et al., 2003). Congestion arising during peak hours has wasted travelers a massive 

amount of time, fuel, and money, and have caused a number of environmental and health problems (Schrank 

et al., 2012).  To relieve traffic congestion, one of the primary recommendations is to upgrade the signal 

timing and control strategies where the current technology is deficient (Sorensen et al., 2008). 

In reality, a number of control strategies have been developed to optimize the signal settings at 

urban intersections. For isolated intersections, examples of fixed-time signal control are SIGSET (Allsop, 

1971a,b) and SIGCAP (Allsop, 1972, 1976), of which Webster’s formula (Webster, 1958) is often used to 

calculate the traffic delay. Also, several other control strategies, such as the Vehicle Interval and Volume 

Density strategies (De la Breteque and Jezequel, 1979), have been designed for the traffic-responsive case. 

To optimize the signal settings of a set of intersections, examples of fixed-time coordination signal control 

can be found in MAXBAND (Little, 1966), MULTI-BAND (Gartner et al., 1991), and TRANSYT 

(Robertson, 1969). Furthermore, methods like SCOOT (Hunt et al., 1981, 1982) and OPAC (Gartner, 1983) 

have been proposed for the traffic-responsive case. However, as mentioned in (Papageorgiou et al., 2003), 

most of the prevailing signal control strategies were developed for unsaturated conditions, which as a result, 

may not work properly when traffic gets congested. In the literature, some efforts have been devoted to 

developing signal control strategies for oversaturated intersections. One of the examples is the store-and-

forward model in (Gazis and Potts, 1963; Gazis 1964; D’ans and Gazis, 1976; Aboudolas et al., 2007, 2009). 

One of the key features in the store-and-forward model is that when the upstream demands are high, the 

cumulative junction outflow is approximated as a continuous time-dependent function with a slope of its 

averaged flow-rate. However, such an approximation is not reliable when the traffic demands are low or 

when downstream queue spillback exists. To the best of our knowledge, few traffic flow models used in 

existing signal control studies can work under various types of traffic conditions. 

To model the traffic dynamics on road links, the LWR model in (Lighthill and Whitham, 1955; 

Richards, 1956), is widely used. However, the LWR model is a Partial Deferential Equation (PDE) and is 
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difficult to solve analytically. Therefore, in (Daganzo, 1994, 1995), the Cell Transmission Model (CTM) 

was proposed to numerically solve the LWR model using the Godunov method. Many following studies 

have shown that the CTM is able to capture detailed traffic dynamics such as the formation, propagation, 

and dissipation of traffic congestion arising on road links. Besides the CTM, there also exist other traffic 

flow models, e.g., the Link Transmission Model in (Yperman, 2007; Jin, 2014b), the Link Queue Model in 

(Jin, 2012b), and the Vertical Cell Model (Anderson et al., 2015). Since the CTM is the most popular one, 

we will use it as the traffic flow model in this project. 

Earlier in (Lo, 1999; Lo et al., 2001), the CTM was introduced to serve as a traffic flow model in 

the optimization of signal settings in urban networks. Since then, a lot of improvements have proposed to 

enhance the urban signal design with the CTM: to model the platoon dispersion at signalized intersections 

in (Feldman and Maher, 2002), to develop junction models to take into account the merging and diverging 

behaviors in (Almasri and Friedrich, 2005; Su et al, 2013), to model more complicated signal settings in 

(Zhang et al., 2013), and to introduce the concept of sub-zones and sub-cells in (Li, 2010; Gao et al., 2015). 

In fact, in the literature, there have been a lot of junction models proposed for freeway junctions; examples 

are those in (Daganzo, 1995; Lebacque, 1996; Jin and Zhang, 2003; Jin et al., 2009; Jin, 2010, 2014a, 

2012a).  However, in order to mimic the cyclic pattern of signal control, binary variables are often 

introduced in the optimization problem. Due to the increasing number of binary variables in large-scale 

networks, the optimization problem becomes difficult to solve and thus, heuristic methods like the genetic 

algorithm are often used. Therefore, it is necessary to introduce new models into signalized intersections to 

reduce or eliminate the binary variables.   

As one of the earliest attempts, the store-and-forward model in (Gazis and Potts, 1963; Gazis, 1964; 

D’ans and Gazis, 1976; Aboudolas et al., 2007, 2009) tries to simply the traffic dynamics at signalized 

intersections using a continuous averaged function under oversaturated conditions. However, its basic 

assumptions may not work under unsaturated conditions or when queue spillback from the downstream 

section occurs. Recently, in (Han et al., 2014), an averaged model with binary signal at a merging junction 

was proposed, and its approximation accuracy was analyzed under different combinations of traffic 
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conditions and traffic flow fundamental diagrams. However, this model is proposed heuristically, and there 

is no way to justify its correctness.  

Therefore, in this project, we devote our efforts to developing a generic analytical framework to 

derive averaged models for signalized intersections. Using the supply-demand framework (Daganzo, 1995; 

Lebacque, 1996), we first propose three models with binary signals. The signal control is applied to the 

following three cases: (i) to both the upstream demands and the downstream supplies; (ii) to the upstream 

demands only; and (iii) to the downstream supplies only. These models can be applied to the CTM to 

calculate boundary fluxes from upstream demands, downstream supplies, turning proportions, and signal 

settings. They also can be extended to different types of junction with various merging and diverging 

behaviors (Jin and Zhang, 2003; Jin, 2010, 2014a, 2012a). 

For a signalized linear junction, we analytically show that these three models are equivalent to each 

other when the binary signal is used, and it doesn’t matter where to put the signal control to. We derive the 

averaged models by replacing the cyclic signal control with an averaged value, which is the effective green 

ratio. We apply them to the CTM for simulations, and find that they return inconsistent results under 

different traffic conditions. Therefore, we apply their local forms as entropy conditions to the signalized 

linear junction, and solve the arising Riemann problems with the framework of (Jin et al., 2009). After that, 

we derive their invariant forms. With the constraint of maximum average junction flux, we identify that 

only one of them is correct, and the other two are wrong since they fail to catch either the upstream or the 

downstream capacity constraint. That means invariance does not necessarily guarantee correctness. 

Furthermore, we find that different non-invariant averaged models can lead to the same invariant form, 

which shows the importance of deriving invariant models from their non-invariant forms. Using the CTM 

simulation in a signalized ring road, we analyze the approximation accuracy of the correct invariant 

averaged model under different settings of initial conditions, signal settings, and fundamental diagrams. 

We find that the invariant averaged model is a reasonable approximation to the original supply-demand 

model with binary signals, and its approximation accuracy is not sensitive to the types of fundamental 

diagrams but will degrade with long cycle lengths.  
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As a further extension, we apply the analytical framework to more complicated cases, e.g., a 

signalized merging junction. We first propose a supply-demand model with binary signals, in which the 

signal control is applied to both the upstream demands and downstream supplies. Then we obtain the 

corresponding averaged model by replacing the cyclic signal control at each upstream link with its effective 

green ratio. Different from the linear junction, merging behavior should be taken into account. Therefore, 

we introduce two new definitions: Effective Demand and Merging Priority. With these two new definitions, 

we follow the same procedures as those in the linear junction, and derive the invariant form. We further 

verify that the derived invariant model for the signalized linear junction is just a special case of the one for 

the signalized merging junction with zero demand in one of the upstream links. 

In the future, we will introduce the developed analytical framework to more general signalized 

intersections, e.g., four-way intersections. In this case, more complicated driver’s behaviors should be 

considered: merging and diverging. And also, with more upstream and downstream links, the derivation of 

invariant models will be more difficult since more combinations of traffic initial conditions should be 

considered. However, this work is very important for the following research tasks. First, once the derivation 

of invariant averaged models is done, we can combine the modeling of freeway and urban networks as a 

whole since the cyclic pattern of signal control no long exists. In such a case, we can run large-scale network 

simulations more efficiently within the CTM. Second, we can extend our study of network stationary states 

to larger urban networks since traffic dynamics at the signalized junction is now averaged over time. The 

modeling difficulty is significantly reduced. Third, since the development of the averaged models 

significantly reduced the number of binary variables in modeling the signalized junctions, it is possible to 

develop optimal signal settings for large-scale networks more efficiently. Fourth, on the planning side, we 

can fundamentally change the traffic model in the procedure of traffic assignment. We apply the invariant 

averaged model together with the prevailing traffic flow models as the basic simulation models to obtain 

more realistic estimations of travel times, queues, and etc. 
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Abstract 
In the first part of this report, we provide a comprehensive review on the traffic flow models and 

signal control strategies in urban networks. We first introduce the theoretical formulations of existing traffic 

flow models that have been used or potentially can be used in urban networks, including the cell 

transmission model (CTM), the store-and-forward model, the link transmission model (LTM), the link 

queue model (LQM), and the vertical cell model (VCM). Then we provide a review on traditional signal 

control strategies which mostly rely on the formulation of Webster’s delay or the bandwidth concept. Due 

to the capability in capturing detailed traffic dynamics such as the formation, propagation, and dissipation 

of congestion arising at network junctions, we also provide a detailed review on the network representations 

and network junction models used in existing studies of the CTM and the corresponding signal control 

strategies.  

Generally, the optimization problem in the CTM can be formulated as a mixed-integer-linear-

programming (MILP) problem, which introduce a lot of binary variables for large-scale urban networks 

and is difficult to solve. Therefore, in the second part of this report, we aim to derive invariant averaged 

models to eliminate the binary variables introduced by the traffic signals. For the purpose of simplicity, we 

first apply our study to a signalized linear junction connecting one upstream link with one downstream link.  

Starting with three equivalent supply-demand models with binary signals, we derive the averaged models 

by replacing the signal control with an average value, which is the effective green ratio. Then we apply the 

local forms of these averaged models as entropy conditions to the signalized linear junction. After solving 

the arising Riemann problems, we obtain their invariant forms, from which we are able to show that only 

one of them is correct and satisfies the constraint of maximum average junction flux. In addition, we find 

that different non-invariant averaged models can lead to the same invariant form. Using the Cell 

Transmission Model (CTM) simulation on a signalized ring road, we demonstrate that the invariant 

averaged model is a reasonable approximation to the original supply-demand model with binary signals, 

and the approximation accuracy is not sensitive to the types of traffic flow fundamental diagrams but will 
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degrade with long cycle lengths. As a further extension, we apply this analytical framework to more 

complicated cases, e.g., the signalized merging junction. Due to the existence of merging behaviors, we 

introduce two new term while deriving the averaged model: Effective Demand and Merging Priority. With 

these two new terms, we follow similar procedures as those in the linear junction, and derive the 

corresponding invariant averaged model for the merging junction. We further show that the derived 

averaged model for the signalized linear junction is just one special case of the one for the signalized 

merging junction with empty demand in one of the upstream links. 

In summary, the contributions of this project are in two parts. First, it provides researchers and 

engineers a comprehensive review on the state-of-the-art traffic flow models for urban networks and the 

signal control strategies developed particularly in the framework of CTM. Second, it introduces a novel 

analytical framework in deriving invariant averaged models for signalized intersections. The insights 

obtained from this project can potentially help to develop more efficient and effective control and 

management schemes in urban networks in the future.  
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Part I: Introduction 

For a transportation network, it consists of two major components: links and nodes. At the macroscopic (or 

even mesoscopic) level, traffic flow models are often used to model the evolution of traffic inside a link. 

At a junction, models are needed to distribute vehicle flows from the upstream links to the downstream 

ones. Unlike the uninterrupted traffic on freeways, traffic behaves differently in urban networks due to the 

existence of traffic signals to regulate conflicting traffic movements at intersections.  Therefore, in the 

analysis of urban networks, a combination of traffic flow models, junction models, and signal control 

models is needed.  

 In the literature, there have been a number of studies on traffic flow models. At the macroscopic 

level, the widely-used one is the LWR model (Lighthill and Whitham, 1955; Richards, 1956), which is a 

kinematic wave model that considers traffic as a continuum media and incorporates the concept of traffic 

flow fundamental diagram. In (Daganzo, 1994, 1995), a so-called Cell Transmission Model (CTM) was 

proposed to numerically solve the LWR model under general traffic conditions. Since then, CTM has 

attracted a lot of attentions to simulate traffic dynamics not only in freeway networks but also on urban 

streets due to the fact that: (i) CTM can capture detailed traffic dynamics such as the formation, propagation, 

and dissipation of congestion arising at network junctions; (ii) CTM is a macroscopic traffic flow model 

which requires less parameters to calibrate, validate, and optimize. In TRANSYT 13 

(https://trlsoftware.co.uk/support/products/transyt_13), CTM was introduced as an alternative traffic flow 

model to model the queue spillback effects of downstream links. Different from the CTM, another traffic 

flow model, which is called Link Transmission Model (LTM), was proposed to solve the LWR model in 

(Yperman, 2007; Jin, 2014b). It was argued that the LTM is more accurate than the CTM due to the 

numerical diffusion inside the cells in the CTM when shockwave exists. Since it is a new model, few studies 

have applied it for network traffic simulations. Besides the CTM and the LTM, there also been other 

queueing models proposed to model the traffic dynamics within the links. Examples are the store-and-
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forward model in (Gazis 1964; D’ans and Gazis, 1976), the link queue model in (Jin, 2012b), and the 

vertical cell model in (Anderson et al., 2015). 

Due to various types of junctions / intersections in our transportation network, a number of junction 

models have been proposed to distribute the vehicle flows from the upstream links to the downstream ones. 

Examples for linear, merging, diverging, and general junctions can be found in (Daganzo, 1995; Lebacque, 

1996; Jin and Zhang, 2003; Jin et al., 2009; Jin, 2010, 2014a, 2012a). Some of these junction models have 

been incorporated into the CTM to simulate the traffic dynamics in both freeway and urban networks in the 

literature. However, we should note that due to the intrinsic characteristics of traffic flow models, it is not 

guaranteed that a junction model that can work in one traffic flow model can be applied to another one. It 

was shown in (Jin, 2014b) that non-invariant junction models cannot be used in the LTM since it may yield 

no conventional solution to the traffic statics problem under certain traffic conditions. 

In reality, traffic signals have been installed at numerous intersections to regulate conflicting traffic 

movements, and as a result, various signal control strategies have been proposed. As mentioned in (Lo, 

1999, 2001), signal control strategies can be categorized according to the traffic conditions they are applied 

to: unsaturated and oversaturated. For unsaturated conditions, the development of traffic signal mainly rely 

on the following assumptions: (i) traffic is in the uncongested regime and traffic state is nearly stationary, 

and therefore, it is sufficient to have a set of fixed timing plans; (ii) queueing is modeled through classical 

queueing theory, and measures such as average vehicle waiting time and average service rate are used. In 

such a case, Webster's delay formulas have been used to derive optimal signal settings, including cycle 

lengths and green splits, at isolated intersections (Webster, 1958): methods for fixed-time signals include  

SIGSET (Allsop, 1971a,b) and SIGCAP (Allsop, 1972, 1976); and methods for traffic-responsive signals 

include the Vehicle Interval and Volume Density strategies (De la Breteque and Jezequel, 1979). For 

coordinated traffic signals along an arterial corridor, the bandwidth concept of green waves is often used to 

determine the offsets: methods for coordinated fixed-time signals include MAXBAND (Little, 1966), 

MULTI-BAND (Gartner et al., 1991), and TRANSYT (Robertson, 1969); and methods for coordinated 

traffic responsive signals include SCOOT (Hunt et al., 1981, 1982) and OPAC (Gartner, 1983). However, 
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as pointed out in (Papageorgiou, 2003), most of the signal control strategies are mainly developed for 

uncongested traffic conditions. In the literature, there have been some efforts devoted to developing signal 

control strategies under oversaturated conditions. For example, studies in (Gazis and Potts, 1963; Gazis 

1964; D’ans and Gazis, 1976; Aboudolas et al., 2007, 2009) introduced a store-and-forward method to 

develop optimal signal timing plans for oversaturated traffic conditions. In these studies, the departure flow-

rate at the signalized intersections was approximated using a continuous time-dependent function with a 

slope of its average flow-rate, and vehicle queue is updated by a simple first order condition which utilizes 

the difference between the inflows and outflows as well as its initial value. However, few traffic flow 

models used in existing signal control studies can work under a wide range of traffic conditions, i.e., from 

unsaturated to oversaturated conditions.  

Since the CTM can replicate real-world traffic dynamics under a wide range of traffic conditions, 

as one of the earliest attempts, studies in (Lo, 1999, 2001) proposed a new formulation for the traffic signal 

control for one-way streets under the framework of the CTM. Optimal signal control settings were obtained 

by solving the mixed-integer linear programing (MILP) problems. Along this line, (Lo et al., 2001; Lo and 

Chow, 2004) extended this framework to model more complicated one-way streets with merging and 

diverging behaviors. Since it is harder to solve the MILP problems as the network gets larger and more 

complicated, genetic algorithms were used in (Lo et al., 2001; Lo and Chow, 2004) to obtain a set of good, 

rather than optimal, signal settings.  

Since then, a lot of improvements have proposed to enhance the urban signal design with the CTM. 

To model the platoon dispersion at signalized intersections, a family of nonlinear speed-density relations, 

instead of the commonly-used triangular traffic flow fundamental diagram (Haberman, 1977), was 

introduced in (Feldman and Maher, 2002). Furthermore, studies have proposed various network junction 

models to take into account the merging and diverging behaviors at signalized intersections (Almasri and 

Friedrich, 2005; Su et al, 2013) and to model more complicated signal settings, such as the NEMA phase 

settings (Zhang et al., 2010). Under oversaturated conditions, it is possible to have lane blockages caused 

by the queue spillback from the downstream or by the conflicting left-turn and through traffic movements. 
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In (Li, 2010; Gao et al., 2015), the concepts of sub-zones and sub-cells were introduced to handle the lane 

blockage problems.  

Generally, delay minimization is the major objective function to derive a set of optimal signal 

settings; examples can be found in (Lo, 1999; Lo, 2001; Almasri and Friedrich, 2005; Li, 2010). However, 

there also exist studies trying to maximize the system throughput (Li, 2010), to minimize the performance 

index (Feldman and Maher, 2002), to minimize a combination of delay and early arrival flow (He et al., 

2010), or to minimize the mean of excess delay (Zhang et al., 2010). For small networks, commercial 

packages such as CPLEX can be used to solve the MILP problems based on the CTM formulation. However, 

as the study network gets larger and more complicated, it becomes more difficult to solve such MILP 

problems. Therefore, rather than finding an optimal solution, genetic algorithms have been used to find a 

set of reasonably good signal settings; examples can be found in (Lo et al., 2001; Lo and Chow, 2004; 

Almasri and Friedrich, 2005; Li, 2010; Zhang et al., 2010). To further improve the optimization process, in 

(He et al, 2010), linear relaxation and heuristic algorithms were used to find a feasible integer solution for 

the CTM-based traffic signal control models. Besides of these methods, studies in (Feldman and Maher, 

2002) also introduced a hill-climbing method for the signal optimization based on CTM. 

As discussed above, the major bottleneck in optimizing traffic signals at urban intersections is the 

increasing number of binary variables which are used to represent the green-red phases of traffic signals. 

To address this limitation, one of the earliest attempts is the store-and-forward model; examples can be 

found in (Gazis and Potts, 1963; Gazis, 1964; D’ans and Gazis, 1976; Aboudolas et al., 2007, 2009). 

However, this model relies on the assumption of high demand in the upstream and enough supply in the 

downstream, which can be violated when the traffic is either under free-flow conditions or is very congested 

with queue spillback from the downstream. Recently, in (Han et al., 2014), an averaged model of signal 

was proposed for a signalized merging junction, in which the approximation accuracy was analyzed in 

various aspects, e.g., under different traffic conditions and traffic flow fundamental diagrams. However, 

such a model is derived heuristically, which has no guarantee of its correctness. To the best of our 

knowledge, there is still a lack of a systematic and comprehensive study on: (i) deriving averaged models 
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for signalized intersections; and (ii) analyzing their properties and correctness under different combinations 

of road geometries, traffic conditions, and fundamental diagrams.   

In this project, we attempt to fill this gap. For the purpose of simplicity, we take a linear signalized 

intersection connecting an upstream link to a downstream link as an example. We start with three equivalent 

supply-demand models with binary signals. Such supply-demand models were first introduced in the CTM 

to calculate boundary fluxes from upstream demands, downstream supplies, and turning proportions 

(Daganzo, 1995; Lebacque, 1996). They have been extended for different types of junctions with various 

merging and diverging behaviors (Jin and Zhang, 2003; Jin, 2010, 2014a, 2012a). These models can be 

simply extended with binary signals: for example, a signalized intersection is equivalent to a diverging 

junction during a phase.  

Then for a linear junction, we derive the averaged models by replacing the signal control with an 

average value, which is the effective green ratio. The averaging method used in this study has been widely 

used in other systems with periodic forces (Krein et al., 1990; Sanders et al., 2007). We use these averaged 

models as entropy conditions for a network kinematic wave model. After solving the arising Riemann 

problems within the framework of (Jin et al., 2009), we obtain their invariant forms (Lebacque, 2005), from 

which we are able to show that only one of them is correct and satisfies the constraint of maximum average 

junction flux. In addition, we find that different non-invariant averaged models can lead to the same 

invariant form. Using the Cell Transmission Model (CTM) simulation on a signalized ring road, we 

demonstrate that the invariant averaged model is a reasonable approximation to the original supply-demand 

model with binary signals, and the approximation accuracy is not sensitive to the types of traffic flow 

fundamental diagrams but will degrade with long cycle lengths. 

Furthermore, we extend this analytical framework to more complicated junctions, e.g., a signalized 

merging junction connecting two upstream links and one downstream one. We follow a similar procedure 

as in the signalized linear junction. We first provide a model of binary signals at the merging junction, in 

which the signal control is applied to both the upstream demands and downstream supplies. Then we derive 

its averaged counterpart by replacing the cyclic signal control in each phase with a constant value, which 
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turns out to be its effective green ratio. Different from the linear junction, we propose two new important 

definitions: Effective Demand and Merging Priority. Effective Demand of an upstream link takes into 

account not only its current demand, but also the reduced flow rate constrained by road geometries and 

signal settings. Merging Priority of an upstream link is a term computed as the percentage of its effective 

green time to the total effective green time. With these two new definitions, we apply the local form of this 

averaged model at the merging junction, solve the corresponding Riemann problems, and finally derive its 

invariant form. We further verify that the derived invariant averaged model for the signalized linear junction 

is just a special case of the one for the signalized merging junction with empty demand in one of the 

upstream links. 

In summary, the analytical framework developed in this project provides fundamental bricks for 

future research developments. As already shown in this project, the current study framework is generic and 

can be extended to more complicated cases, such as four-way intersections. In such cases, more complicated 

driver’s behaviors, such as merging and diverging, should be considered. In the literature, there have been 

models for freeway merging, diverging, and general (N-by-M) junctions; examples can be found in (Jin and 

Zhang, 2003; Jin 2010, 2014a, 2012a). For signalized intersections, traffic signals can be added into these 

junction models to mimic the evolutions of different traffic movements. However, it is not easy to derive 

correct averaged models for the corresponding intersections. Since more combinations of upstream 

demands and downstream supplies should be considered, solving the corresponding Riemann problems 

becomes difficult.  

In the future, after the averaged models of signalized intersections are derived, it is straightforward 

to combine them with the state-of-the-art link models, which as a result forms a new framework of network 

kinematic wave models. Within this new framework, freeway and urban road networks can be modeled as 

a whole since the discrete signal control at urban intersections can be replaced by the continuous type of 

averaged models. This framework will become a very powerful tool in analyzing the static characteristics 

of traffic in large-scale networks, both theoretically and numerically. For example, traditional traffic 

assignment problems rely either on the link performance functions, which are unrealistic presentations of 
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congested traffic, or on more detailed microscopic simulation models, which are very complicated and 

time-consuming for large-scaled networks. This new framework will provide fundamental improvement on 

this part. On the one hand, its kinematic wave model provides a more realistic representation of traffic, 

which yields more accurate estimation of traffic performance metrics, e.g., vehicle queue, delay, speed, 

density, and flow-rate. On the other hand, its average models at signalized intersections significantly 

simplify the complexity of modeling signal control, which not only can dramatically improve the simulation 

speed but also enable the analytical studies of network traffic statics and dynamics. Furthermore, because 

the development of averaged models eliminates the binary variables used in traditional signal optimization 

algorithms, this new framework can be used as the baseline model to facilitate the optimization of traffic 

signals in large-scale networks.   
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PART II: Literature Review 

Literature review in this part is organized as follows. In section 1, we provide a review on the traffic 

flow models including the CTM, the store-and-forward model, the LTM, the LQM, and the VCM. In section 

2, we provide a review on traditional signal control strategies which mostly rely on Webster’s delay 

formulation and the concept of maximum bandwidth. In Section 3, we provide a summary on the CTM-

based network representations and junction models. In Section 4, we provide a summary on the CTM-based 

signal control strategies including the objective functions and the optimization methods. In Section 6, we 

draw our conclusions with some future research directions. 

 

1. Traffic flow models for urban networks 

1.1 Cell transmission model 

In kinematic wave theories, traffic flow is considered as a continuous media. Three location-and-

time dependent variables, speed 𝑣𝑣(𝑥𝑥, 𝑡𝑡), density 𝑘𝑘(𝑥𝑥, 𝑡𝑡), and flow-rate 𝑞𝑞(𝑥𝑥, 𝑡𝑡), are used to describe the 

traffic flow characteristics at point 𝑥𝑥 and time 𝑡𝑡. For a road section without any entrances and exits, flow 

conservation is hold, which can be written as 

 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 0 (1) 

In traffic flow theory, it is well known that there exists a fundamental relation between flow-rate (or speed) 

and density (Greenshields, 1935), i.e., 𝑞𝑞(𝑥𝑥, 𝑡𝑡) = 𝑄𝑄(𝑘𝑘(𝑥𝑥, 𝑡𝑡)) or 𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉(𝑘𝑘(𝑥𝑥, 𝑡𝑡)). Such a relation is 

known as the traffic flow fundamental diagram and can be validated using the vehicle loop detector data 

from freeways. Generally speaking, 𝑄𝑄(𝑘𝑘) is a concave function and attains its capacity 𝐶𝐶 at 𝑘𝑘 = 𝑘𝑘𝑐𝑐, where 

𝑘𝑘𝑐𝑐 is the critical density. Introducing the fundamental diagram into Equation (1), the Lighthill-Whitham-

Riahcrds (LWR) model (Lighthill and Whitham, 1955; Richards, 1956) is obtained. 

 𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕(𝑘𝑘(𝑥𝑥, 𝑡𝑡))

𝜕𝜕𝜕𝜕
= 0 (2) 
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 Equation (2) is a hyperbolic conservation law and is difficult to solve analytically under general 

initial and boundary conditions. Therefore, in (Daganzo, 1994, 1995), the cell transmission model (CTM) 

was introduced to numerically solve Equation (2). According to the Godunov method (Godunov, 1959), a 

link is equally divided into N cells with a length of Δ𝑥𝑥, and the whole time interval is partitioned into J time 

steps with an interval of Δ𝑡𝑡. In Figure 1, cell representation inside a regular link is provided. Then the 

discrete version of Equation (2) can be written as 

 

Figure 1 Cell representation inside a regular link 

 𝑘𝑘𝑖𝑖
𝑗𝑗+1 − 𝑘𝑘𝑖𝑖

𝑗𝑗

Δ𝑡𝑡
−
𝑓𝑓𝑖𝑖−1
𝑗𝑗 − 𝑓𝑓𝑖𝑖

𝑗𝑗

Δ𝑥𝑥
= 0 (3) 

where 𝑘𝑘𝑖𝑖
𝑗𝑗and 𝑘𝑘𝑖𝑖

𝑗𝑗+1 are the densities of cell i at time steps j  and j+1, respectively, and  𝑓𝑓𝑖𝑖−1
𝑗𝑗  and 𝑓𝑓𝑖𝑖

𝑗𝑗 are the 

upstream and downstream boundary fluxes of cell i at time step j, respectively. Here, the choice of Δ𝑡𝑡
Δ𝑥𝑥

 should 

follow the CFL condition (Courant et al., 1928), which requires a vehicle cannot travel across one cell at 

one time step. That is, vfΔ𝑡𝑡
Δ𝑥𝑥

≤ 1, where vf is the free-flow speed of that link. Given densities and fluxes at 

time step j, the density at time step j+1 can be updated using the following equation: 

 𝑘𝑘𝑖𝑖
𝑗𝑗+1 = 𝑘𝑘𝑖𝑖

𝑗𝑗 +
Δ𝑡𝑡
Δ𝑥𝑥

(𝑓𝑓𝑖𝑖−1
𝑗𝑗 − 𝑓𝑓𝑖𝑖

𝑗𝑗) (4) 

To obtain the fluxes crossing cell boundaries, the definitions of demand 𝐷𝐷 and supply 𝑆𝑆 (Daganzo, 

1995; Lebacque, 1996) are introduced and can be calculated as 

 𝐷𝐷 = 𝑄𝑄(min{𝑘𝑘,𝑘𝑘𝑐𝑐}) (5) 

 𝑆𝑆 = 𝑄𝑄(max {𝑘𝑘,𝑘𝑘𝑐𝑐}) (6) 

Therefore, the flux through a cell boundary can be calculated by taking the minimum of the upstream cell’s 

demand and the downstream cell’s supply, which is 
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 𝑓𝑓𝑖𝑖−1
𝑗𝑗 = min{𝐷𝐷𝑖𝑖−1

𝑗𝑗 ,𝑆𝑆𝑖𝑖
𝑗𝑗} (7) 

where 𝐷𝐷𝑖𝑖−1
𝑗𝑗 is the demand of cell i-1, and 𝑆𝑆𝑖𝑖

𝑗𝑗 is the supply of cell i at time step j. For freeway networks, 

network junction models such as those in (Daganzo, 1995; Lebacque, 1996; Jin and Zhang, 2003; Jin et al., 

2009; Jin, 2010, 2014a, 2012a) are needed to model the traffic dynamics at various types of junctions. For 

urban networks, besides the network junction models, signal control should be considered in order to 

manage the conflicting traffic movements at the intersections. 

1.2 Other models for urban traffic flow 

1.2.1 Store-and-forward model 

The modeling framework of the store-and-forward model was first proposed by (Gazis and Potts, 

1963) for an isolated intersection under oversaturated traffic conditions. After that, the study was extended 

to two consecutive intersections in (Gazis, 1964). Different from the graphical methods used in (Gazis and 

Potts, 1963; Gazis, 1964), the optimization of signal control was reduced to the linear programing problem 

with time discretization in (D’ans and Gazis, 1976). In addition, formulation of the optimal signal control 

problem under the store-and-forward framework was proposed for more complexed networks. In recent 

studies by (Aboudolas et al., 2007&2009), the store-and-forward method was applied to the control and 

optimization of signal control in large-scale urban networks.  

In the store-and-forward model (D’ans and Gazis, 1976), an urban network is represented by a 

direct graph 𝒢𝒢 = (𝒩𝒩,ℒ), where 𝒩𝒩 is the set of nodes and ℒ is the set of links. Vehicles are assumed to 

travel with a constant speed inside a link before reaching the downstream node, and then, they are queued 

in the front of the node until it is allowed to move to the downstream destinations.  For link 𝑖𝑖, the dynamics 

can be formulated as (Aboudolas et al., 2007&2009) 

 𝑥𝑥𝑖𝑖
𝑗𝑗+1 = 𝑥𝑥𝑖𝑖

𝑗𝑗 + 𝑇𝑇[𝑞𝑞𝑖𝑖
𝑗𝑗 − 𝑠𝑠𝑖𝑖

𝑗𝑗 + 𝑑𝑑𝑖𝑖
𝑗𝑗 − 𝑢𝑢𝑖𝑖

𝑗𝑗] (8) 

where 𝑥𝑥𝑖𝑖
𝑗𝑗+1 and 𝑥𝑥𝑖𝑖

𝑗𝑗 are the numbers of vehicles in link 𝑖𝑖 at time steps 𝑗𝑗 + 1, and 𝑗𝑗, respectively.  𝑞𝑞𝑖𝑖
𝑗𝑗 and 𝑢𝑢𝑖𝑖

𝑗𝑗 

are the in-flow and out-flow at time step 𝑗𝑗, respectively; 𝑠𝑠𝑖𝑖
𝑗𝑗 and 𝑑𝑑𝑖𝑖

𝑗𝑗 are the exit and demand flows within 
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the link at time step 𝑗𝑗, respectively. 𝑇𝑇 is the discrete time step which can be set to be equal to the cycle 

length.  

A key component in the store-and-forward method is the approximation of the out-flow 𝑢𝑢𝑖𝑖
𝑗𝑗 under 

oversaturated traffic conditions. Let’s consider a simple example of an intersection with two one-way streets 

(Gazis and Potts, 1963). During the peak periods when the road capacity is mostly needed, it is likely to 

have queues building up in one or both approaches if the following requirement is satisfied.  

 𝑎𝑎1(𝑡𝑡)
𝑠𝑠1

+
𝑎𝑎2(𝑡𝑡)
𝑠𝑠2

> 1 −
𝑇𝑇𝑙𝑙
𝐶𝐶

 (9) 

Here, 𝑎𝑎1(𝑡𝑡) is the arrival rate for one approach, while 𝑎𝑎2(𝑡𝑡) is for the other one. 𝑠𝑠1 and 𝑠𝑠2 are the saturation 

flow-rates in the downstream of the intersection. 𝑇𝑇𝑙𝑙 is the total lost time, while 𝐶𝐶 is the cycle length. Since 

the total traffic demand is high enough, it is possible to set the signal settings that the green times are fully 

used, and thus, the discharging flow-rates are equal to the saturation flow-rates. In Figure 2, the arrival (blue 

solid lines) and the saw-toothed (red dashed lines) discharging patterns are provided.  In (Gazis and Potts, 

1963; Gazis, 1964), it was proposed to smooth the service curves using continuous functions (the green 

curves) by considering the fact that large delays are caused by queueing and the impact of the additional 

delay due to the saw-toothed pattern is limited. Therefore, for a general signalized intersection, the out-flow 

𝑢𝑢𝑖𝑖
𝑗𝑗 can be calculated as (Aboudolas et al., 2007&2009) 

 
𝑢𝑢𝑖𝑖
𝑗𝑗 =

𝐺𝐺𝑖𝑖
𝑗𝑗𝑠𝑠𝑖𝑖
𝐶𝐶

 (10) 

where 𝐺𝐺𝑖𝑖
𝑗𝑗 is the total effective green time in one cycle for link 𝑖𝑖 at time step 𝑗𝑗. 
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Figure 2 Arrival and discharging patterns at one intersection with two one-way streets. 

 

1.2.2 Link transmission model 

Traditionally, at a point (𝑎𝑎, 𝑥𝑥𝑎𝑎) inside link 𝑎𝑎, the density 𝑘𝑘𝑎𝑎(𝑥𝑥𝑎𝑎 , 𝑡𝑡), the speed 𝑣𝑣𝑎𝑎(𝑥𝑥𝑎𝑎, 𝑡𝑡), the flow-

rate 𝑞𝑞𝑎𝑎(𝑥𝑥𝑎𝑎, 𝑡𝑡) are used as variables to describe the evolution of traffic flow. The flow conservation, 𝜕𝜕𝑘𝑘𝑎𝑎
𝜕𝜕𝜕𝜕

+

𝜕𝜕𝑞𝑞𝑎𝑎
𝜕𝜕𝜕𝜕

= 0 , together with the traffic flow fundamental diagram, 𝑞𝑞𝑎𝑎 = 𝑄𝑄𝑎𝑎(𝑘𝑘𝑎𝑎) , forms the LWR model. 

However, we also can use another type of state variable, which is the cumulative flow, 𝐴𝐴𝑎𝑎(𝑥𝑥𝑎𝑎, 𝑡𝑡), and is 

known as the Moskovitz function (Moskowitz, 1965). Since we have 𝑘𝑘𝑎𝑎 = −𝜕𝜕𝐴𝐴𝑎𝑎
𝜕𝜕𝜕𝜕

, and 𝑞𝑞𝑎𝑎 = 𝜕𝜕𝐴𝐴𝑎𝑎
𝜕𝜕𝜕𝜕

, the flow 

conservation is automatically satisfied if we have 𝜕𝜕
2𝐴𝐴𝑎𝑎
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 𝜕𝜕2𝐴𝐴𝑎𝑎
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

. Therefore, to solve the LWR model in 

Equation (2) is equivalent to solve the following Hamilton-Jacobi equation 

 𝜕𝜕𝐴𝐴𝑎𝑎
𝜕𝜕𝜕𝜕

− 𝑄𝑄𝑎𝑎(−
𝜕𝜕𝐴𝐴𝑎𝑎
𝜕𝜕𝜕𝜕

) = 0 (11) 

with the Hamiltonian 𝐻𝐻 �𝜕𝜕𝐴𝐴𝑎𝑎
𝜕𝜕𝜕𝜕
� = −𝑄𝑄𝑎𝑎(−𝜕𝜕𝐴𝐴𝑎𝑎

𝜕𝜕𝜕𝜕
). Besides the CTM, another new solution to the LWR model, 

which is called the Link Transmission Model (LTM), was proposed in recent studies. The discrete version 

can be found in (Yperman, 2007), while its continuous version can be referred to (Jin, 2014b).   
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Here, the triangular traffic flow fundamental diagram (Haberman, 1977), 𝑞𝑞 = 𝑄𝑄(𝑘𝑘) =

min {𝑣𝑣𝑓𝑓𝑘𝑘,𝑤𝑤(𝑘𝑘𝑗𝑗 − 𝑘𝑘)} , is used. The initial cumulative flow at 𝑥𝑥𝑎𝑎 ∈ [0, 𝐿𝐿𝑎𝑎] is denoted as 𝑁𝑁𝑎𝑎(𝑥𝑥𝑎𝑎). The 

cumulative in-flow and the in-flux at the upstream boundary are denoted as 𝐹𝐹𝑎𝑎(𝑡𝑡) and 𝑓𝑓𝑎𝑎(𝑡𝑡), respectively. 

The cumulative out-flow and the out-flux at the downstream boundary are denoted as 𝐺𝐺𝑎𝑎(𝑡𝑡) and 𝑔𝑔𝑎𝑎(𝑡𝑡), 

respectively. To describe the congestion pattern inside a link, two variables, the link queue size 𝛼𝛼𝑎𝑎(𝑡𝑡) and 

the link vacancy size 𝛽𝛽𝑎𝑎(𝑡𝑡) are used and can be calculated as follows: 

  

𝛼𝛼𝑎𝑎(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧𝑁𝑁𝑎𝑎�𝐿𝐿𝑎𝑎 − 𝑣𝑣𝑎𝑎,𝑓𝑓𝑡𝑡� − 𝐺𝐺𝑎𝑎(𝑡𝑡) 𝑡𝑡 ≤

𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

𝐹𝐹𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

� − 𝐺𝐺𝑎𝑎(𝑡𝑡) 𝑡𝑡 >
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

 

𝛽𝛽𝑎𝑎(𝑡𝑡) =

⎩
⎨

⎧ 𝑁𝑁𝑎𝑎(𝑤𝑤𝑎𝑎𝑡𝑡) + 𝑘𝑘𝑎𝑎,𝑗𝑗𝑤𝑤𝑎𝑎𝑡𝑡 − 𝐹𝐹𝑎𝑎(𝑡𝑡) 𝑡𝑡 ≤
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

𝐺𝐺𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎
� + 𝑘𝑘𝑎𝑎,𝑗𝑗𝐿𝐿𝑎𝑎 − 𝐹𝐹𝑎𝑎(𝑡𝑡) 𝑡𝑡 >

𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

 

(12) 

Initially, we have 𝛼𝛼(0) = 0 and 𝛽𝛽(0) = 0.  In the LTM, either cumulative flows or link queue and vacancy 

sizes can be used as stable variables to describe the evolution of traffic dynamics. If the cumulative flows, 

i.e., 𝐹𝐹𝑎𝑎(𝑡𝑡) and 𝐺𝐺𝑎𝑎(𝑡𝑡), are used, we have the following evolution equations:  

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐹𝐹𝑎𝑎(𝑡𝑡) = 𝑓𝑓𝑎𝑎(𝑡𝑡) 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐺𝐺𝑎𝑎(𝑡𝑡) = 𝑔𝑔𝑎𝑎(𝑡𝑡) 

(13) 

If the link queue and vacancy sizes, i.e., 𝛼𝛼𝑎𝑎(𝑡𝑡) and 𝛽𝛽𝑎𝑎(𝑡𝑡), are used, we have the following evolution 

equations:  

 
𝑑𝑑𝛼𝛼𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑑𝑑

=

⎩
⎪
⎨

⎪
⎧𝑘𝑘𝑎𝑎�𝐿𝐿𝑎𝑎 − 𝑣𝑣𝑎𝑎,𝑓𝑓𝑡𝑡, 0�𝑣𝑣𝑎𝑎,𝑓𝑓 − 𝑔𝑔𝑎𝑎(𝑡𝑡) 𝑡𝑡 ≤

𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

𝑓𝑓𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

� − 𝑔𝑔𝑎𝑎(𝑡𝑡) 𝑡𝑡 >
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

 (14) 
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𝑑𝑑𝛽𝛽𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑑𝑑

=

⎩
⎨

⎧−𝑘𝑘𝑎𝑎(𝑤𝑤𝑎𝑎𝑡𝑡, 0)𝑤𝑤𝑎𝑎 + 𝑘𝑘𝑎𝑎,𝑗𝑗𝑤𝑤𝑎𝑎 − 𝑓𝑓𝑎𝑎(𝑡𝑡) 𝑡𝑡 ≤
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

𝑔𝑔𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎
� − 𝑓𝑓𝑎𝑎(𝑡𝑡) 𝑡𝑡 >

𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

 

To update the evolution functions in Equations (13) and (14), the in-fluxes and out-fluxes are 

needed to be calculated/updated first. Here we define an indicator function 𝐻𝐻(𝑦𝑦) for 𝑦𝑦 ≥ 0, which is 

formulated as follows: 

 𝐻𝐻(𝑦𝑦) = lim
Δ𝑡𝑡→0+

𝑦𝑦
Δ𝑡𝑡

= � 0 𝑦𝑦 = 0
+∞ 𝑦𝑦 > 0 (15) 

Then the link demand 𝑑𝑑𝑎𝑎(𝑡𝑡) and link supply 𝑠𝑠𝑎𝑎(𝑡𝑡) are defined as  

 

𝑑𝑑𝑎𝑎(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧min {𝑘𝑘𝑎𝑎�𝐿𝐿𝑎𝑎 − 𝑣𝑣𝑎𝑎,𝑓𝑓𝑡𝑡, 0�𝑣𝑣𝑎𝑎,𝑓𝑓 + 𝐻𝐻�𝛼𝛼𝑎𝑎(𝑡𝑡)�,𝐶𝐶𝑎𝑎} 𝑡𝑡 ≤

𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

min{𝑓𝑓𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

�+ 𝐻𝐻�𝛼𝛼𝑎𝑎(𝑡𝑡)�,𝐶𝐶𝑎𝑎} 𝑡𝑡 >
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

 

𝑠𝑠𝑎𝑎(𝑡𝑡) =

⎩
⎨

⎧min {𝑘𝑘𝑎𝑎,𝑗𝑗𝑤𝑤𝑎𝑎 − 𝑘𝑘𝑎𝑎(𝑤𝑤𝑎𝑎𝑡𝑡, 0)𝑤𝑤𝑎𝑎 + 𝐻𝐻�𝛽𝛽𝑎𝑎(𝑡𝑡)�,𝐶𝐶𝑎𝑎} 𝑡𝑡 ≤
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

min{𝑔𝑔𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎
�+ 𝐻𝐻(𝛽𝛽𝑎𝑎(𝑡𝑡)),𝐶𝐶𝑎𝑎} 𝑡𝑡 >

𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

 

(16) 

At a junction 𝑗𝑗, macroscopic junction models are used to determine the in-fluxes and out-fluxes from the 

upstream link demands, downstream link supplies, and turning proportions, which in general can be written 

as follows: 

 �𝒈𝒈𝑗𝑗(𝑡𝑡),𝒇𝒇𝑗𝑗(𝑡𝑡)� = 𝑭𝑭(𝒅𝒅𝑗𝑗(𝑡𝑡), 𝒔𝒔𝑗𝑗(𝑡𝑡), 𝝃𝝃𝑗𝑗(𝑡𝑡))) (17) 

Here, 𝒈𝒈𝑗𝑗(𝑡𝑡) is the set of in-fluxes, while 𝒇𝒇𝑗𝑗(𝑡𝑡) is the set of out-fluxes. 𝒅𝒅𝑗𝑗(𝑡𝑡) is the set of upstream link 

demands, while 𝒔𝒔𝑗𝑗(𝑡𝑡)  is the set of downstream link supplies. 𝝃𝝃𝑗𝑗(𝑡𝑡)  is a matrix that contains turning 

proportions from the upstream links to the downstream ones. As shown in (Jin, 2014b), non-invariant 

junction models cannot be used in the LTM, which may yield no conventional solution to the traffic statics 

problem under certain traffic conditions. A set of invariant junction models can be found in (Jin et al., 2009; 

Jin, 2010, Jin, 2012a; Jin, 2014a). 
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With Equations (16) and (17), the in-fluxes and out-fluxes can be calculated and then be introduced 

into Equations (13) or (14) to update the state variables. But note that, as shown in Equation (16), link 

demands and supplies depend on the historical data, and therefore, Equations (13) and (14) are systems of 

ordinary differential equations (ODEs) with delays. Once the cumulative in-flows 𝐹𝐹𝑎𝑎(𝑡𝑡) and the cumulative 

out-flows 𝐺𝐺𝑎𝑎(𝑡𝑡) are obtained, traffic states inside link 𝑎𝑎 can be obtained. More details can be referred to 

(Jin, 2014b). 

1.2.3 Link queue model 

In (Jin, 2012b), a so-called link queue model was proposed to consider vehicles in a link as a single 

queue. We denote the set of regular links as 𝐴𝐴, the set of origins as 𝑂𝑂, and the set of destinations as 𝑅𝑅. Then, 

the state variable for a single link 𝑎𝑎 ∈ 𝐴𝐴  is its average density, 𝑘𝑘𝑎𝑎, while it is the link volume, 𝐾𝐾𝑜𝑜, for an 

origin 𝑜𝑜 ∈ 𝑂𝑂 . The link queue model incorporates two important features: (i) traffic flow fundamental 

diagram at the link level is used to define the link-based supply and demand; (ii) the junction fluxes are 

calculated based on the link demands in the upstream and the link supplies in the downstream. The link 

queue model of network traffic flow in (Jin, 2012b) can be formulated as  

 𝑑𝑑𝑘𝑘𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑑𝑑

=
1
𝐿𝐿𝑎𝑎
�𝑓𝑓𝑎𝑎(𝑡𝑡) − 𝑔𝑔𝑎𝑎(𝑡𝑡)�,          𝑎𝑎 ∈ 𝐴𝐴 

𝑑𝑑𝐾𝐾𝑜𝑜(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑜𝑜(𝑡𝑡) − 𝑔𝑔𝑜𝑜(𝑡𝑡),                     𝑜𝑜 ∈ 𝑂𝑂 

(18) 

where 𝐿𝐿𝑎𝑎 is the link length, and 𝑓𝑓𝑎𝑎(𝑡𝑡) is the in-flux and 𝑔𝑔𝑎𝑎(𝑡𝑡) is the out-flux of link 𝑎𝑎. 𝑓𝑓𝑜𝑜(𝑡𝑡) is the arrival 

rate, and 𝑔𝑔𝑜𝑜(𝑡𝑡) is the out-flux at origin 𝑜𝑜.  

In order to update the densities or queued vehicles in Equation (18), the in-flows and out-flows 

should be calculated first. For a regular link, 𝑎𝑎 ∈ 𝐴𝐴, its demand and supply are defined as 

 𝐷𝐷𝑎𝑎(𝑡𝑡) = 𝑄𝑄𝑎𝑎(min {𝑘𝑘𝑎𝑎(𝑡𝑡),𝑘𝑘𝑎𝑎,𝑐𝑐}) 

𝑆𝑆𝑎𝑎(𝑡𝑡) = 𝑄𝑄𝑎𝑎(max {𝑘𝑘𝑎𝑎(𝑡𝑡),𝑘𝑘𝑎𝑎,𝑐𝑐}) 
(19) 

Here, 𝑄𝑄𝑎𝑎(𝑘𝑘𝑎𝑎) is the traffic flow fundamental diagram of link 𝑎𝑎. Different from a regular link, the demand 

for an origin 𝑜𝑜 ∈ 𝑂𝑂 is defined as 
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 𝐷𝐷𝑜𝑜(𝑡𝑡) = 𝑓𝑓𝑜𝑜(𝑡𝑡) + 𝐼𝐼𝐾𝐾𝑜𝑜(𝑡𝑡)≥0 = �
+∞ 𝐾𝐾𝑜𝑜(𝑡𝑡) > 0
𝑓𝑓𝑜𝑜(𝑡𝑡) 𝐾𝐾𝑜𝑜(𝑡𝑡) = 0 (20) 

The above equation shows that the demand at an origin is infinity if a queue exists, while it is the same as 

the inflow when the queue disappears. For a destination 𝑟𝑟 ∈ 𝑅𝑅, the supply is defined as 𝑆𝑆𝑟𝑟(𝑡𝑡), which is set 

to be +∞ when the downstream is not blocked. Since each link is considered as a whole in the link queue 

model, we only need to calculate the inflows and outflows at the junctions. Therefore, macroscopic junction 

models are needed for different types of junctions. Generally, given upstream link demands and 

downstream link supplies, a junction model at  junction 𝑗𝑗 can be formulated as  

 �𝑮𝑮𝑗𝑗(𝑡𝑡),𝑭𝑭𝑗𝑗(𝑡𝑡)� = ϜϜ(𝑫𝑫𝑗𝑗(𝑡𝑡),𝑺𝑺𝑗𝑗(𝑡𝑡), 𝝃𝝃𝑗𝑗(𝑡𝑡)) (21) 

where  𝑮𝑮𝑗𝑗(𝑡𝑡) is  the set of out-fluxes, 𝑭𝑭𝑗𝑗(𝑡𝑡) the set of in-fluxes, 𝑫𝑫𝑗𝑗(𝑡𝑡) the set of upstream link demands, 

and 𝑺𝑺𝑗𝑗(𝑡𝑡) the set of downstream link supplies. 𝝃𝝃𝑗𝑗(𝑡𝑡) is the matrix of turning proportions indicating vehicle 

flows from the upstream links to the downstream ones. Examples of the junction models can be found in 

(Daganzo, 1995; Lebacque, 1996; Jin and Zhang, 2003; Jin et al., 2009; Jin, 2010, Jin, 2012a; Jin, 2014a). 

The link queue model in Equation (18) cannot be analytically solved under general initial and 

boundary conditions, and therefore, numerical methods should be introduced to obtain its approximate 

solutions. In (Jin, 2012b), an explicit Euler method was used to obtain the discrete version of Equation (18). 

The whole time period is equally divided into J time steps with a size of Δ𝑡𝑡. At time step 𝑗𝑗, the average 

density on link 𝑎𝑎 is denoted as 𝑘𝑘𝑎𝑎
𝑗𝑗 , and the average queue at origin 𝑜𝑜 is denoted as 𝐾𝐾𝑜𝑜

𝑗𝑗. The link demand 

and supply are denoted as 𝐷𝐷𝑎𝑎
𝑗𝑗  and 𝑆𝑆𝑎𝑎

𝑗𝑗 , respectively. For origin 𝑜𝑜 , the demand is denoted as 𝐷𝐷𝑜𝑜
𝑗𝑗  and is 

calculated as  

 
𝐷𝐷𝑜𝑜
𝑗𝑗 =

𝐾𝐾𝑜𝑜
𝑗𝑗

Δ𝑡𝑡
+ 𝑓𝑓𝑜𝑜

𝑗𝑗 (22) 

Then the density and queue length at time step 𝑗𝑗 + 1 can be updated by 

 𝑘𝑘𝑎𝑎
𝑗𝑗+1 = 𝑘𝑘𝑎𝑎

𝑗𝑗 +
Δ𝑡𝑡
𝐿𝐿𝑎𝑎

(𝑓𝑓𝑎𝑎
𝑗𝑗 − 𝑔𝑔𝑎𝑎

𝑗𝑗) (23) 
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𝐾𝐾𝑜𝑜
𝑗𝑗+1 = 𝐾𝐾𝑜𝑜

𝑗𝑗 + �𝑓𝑓𝑜𝑜
𝑗𝑗 − 𝑔𝑔𝑜𝑜

𝑗𝑗�Δ𝑡𝑡 

1.2.4 Vertical cell model 

In (Anderson et al., 2015), a vertical queueing model called Vertical Cell Model (VCM) was 

proposed. In VCM, new features such as link transit time and finite queue capacity are incorporated into 

the queueing dynamics. In the network representation of VCM, a network is represented as a graph 𝒢𝒢 =

(𝒩𝒩,ℒ), where 𝒩𝒩 is the set of nodes and ℒ is the set of links. Physical roads are divided into several parallel 

links, and each link contains vehicle flows aiming to the same downstream roadway. Mid-link split is used 

to divide a roadway into two to take into account the cases of shared lanes and turn bays. Therefore, the 

link set ℒ contains three types of links: internal links, entry links, and exit links. For an internal link, the in-

flux and out-flux are constrained by the number of vehicles it contains. For an entry link, it serves as an 

entry for external demands. For an exit link, it serves as a reservoir which has unlimited storage. The node 

set 𝒩𝒩 contains two types of nodes: intermediate nodes and intersection nodes. For an intermediate node, it 

acts as a diverging junction in which a single demand flow is divided into several downstream demand 

flows with a set of specified turning ratios. For an intersection node, it takes into account the conflicts 

between vehicle flows and distributes them according to the dictated turning ratios. 

In the VCM, fluxes crossing a node are limited by the so-called sending constraints of its upstream 

links, and the receiving constraints of its downstream links. The out-flux departing from an upstream link 

𝑙𝑙 ∈ 𝐼𝐼𝑛𝑛 at node 𝑛𝑛 can be calculated as 

 𝑑𝑑𝑙𝑙(𝑡𝑡) = 𝐺𝐺𝑙𝑙(𝑡𝑡)min {𝑆𝑆𝑙𝑙(𝑡𝑡), min
𝑧𝑧∈𝑂𝑂𝑂𝑂𝑂𝑂(𝑙𝑙)

{
1
𝛽𝛽𝑛𝑛
𝑙𝑙,𝑧𝑧 𝑅𝑅𝑧𝑧(𝑡𝑡)}} (24) 

where 𝑂𝑂𝑂𝑂𝑂𝑂(𝑙𝑙) is the set of downstream links of link 𝑙𝑙, 𝑆𝑆𝑙𝑙(𝑡𝑡) the sending constraint of link 𝑙𝑙, 𝑅𝑅𝑧𝑧(𝑡𝑡) the 

receiving constraint of link 𝑧𝑧, 𝛽𝛽𝑛𝑛
𝑙𝑙,𝑧𝑧 the turning ratio from link 𝑙𝑙 to link 𝑧𝑧, and 𝐺𝐺𝑙𝑙(𝑡𝑡) an indicator to permit 

link 𝑙𝑙 to discharge according to the signal settings. The in-flux entering a downstream queue 𝑚𝑚 ∈ 𝑂𝑂𝑛𝑛 is 

calculated as  
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 𝑎𝑎𝑚𝑚(𝑡𝑡) = � 𝛽𝛽𝑛𝑛
𝑘𝑘,𝑚𝑚𝑑𝑑𝑘𝑘(𝑡𝑡)

𝑘𝑘∈𝐼𝐼𝑛𝑛

 (25) 

Similar to the CTM, a VCM link is divided into several cells, e.g., 𝜏𝜏𝑙𝑙 cells. After a vehicle enters a VCM 

link, it first travels at the free-flow speed across 𝜏𝜏𝑙𝑙 − 1 transit cells before reaching the terminal queueing 

cell 𝜏𝜏𝑙𝑙 . The terminal queueing cell 𝜏𝜏𝑙𝑙  is used to store the queued vehicles. Therefore, there are 𝜏𝜏𝑙𝑙  state 

variables inside each link: (i) 𝑓𝑓𝑙𝑙,𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1, … , 𝜏𝜏𝑙𝑙 − 1, is the flux entering link 𝑙𝑙 at time 𝑡𝑡 − 𝑖𝑖; and (ii) 𝑞𝑞𝑙𝑙(𝑡𝑡) 

is the number of queued vehicles inside the link. Then, receiving constraints in the VCM can be calculated 

as 

 𝑅𝑅𝑙𝑙(𝑡𝑡) = 𝛾𝛾𝑙𝑙min {𝑐𝑐𝑙𝑙Δ𝑡𝑡, 𝜅𝜅𝑙𝑙 − 𝑞𝑞𝑙𝑙(𝑡𝑡) − � 𝑓𝑓𝑙𝑙,(𝑡𝑡)
𝑖𝑖=1,… ,(𝜏𝜏𝑙𝑙−1)

} (26) 

where 𝑐𝑐𝑙𝑙 is the maximum flow-rate, 𝜅𝜅𝑙𝑙 is a fixed queueing capacity, and 𝛾𝛾𝑙𝑙 is the number of lanes on link 𝑙𝑙. 

The sending constraints can be calculates as 

 𝑆𝑆𝑙𝑙(𝑡𝑡) = 𝛾𝛾𝑙𝑙 min{𝑐𝑐𝑙𝑙Δ𝑡𝑡, 𝑞𝑞𝑙𝑙(𝑡𝑡)} (27) 

With Equations from (24) to (27), the VCM model is complete and is ready for urban network traffic 

simulations. 

2. Traditional signal control methods 

For signal control at arterial intersections, it can be classified into the following two types: for 

isolated intersections only and for coordinated intersections. In the literature, there have been a number of 

signal control strategies proposed for each category. In the following subsections, we provide a review of 

some prevailing strategies. 

2.1 For isolated intersections 

According to (Papageorgiou et al., 2003), fixed-time control strategies for a single intersection can 

be stage-based or phase-based. For stage-based strategies, the stage settings are fixed, and the proposed 

strategies are developed to find optimal splits and cycle lengths by minimizing the total delay or maximizing 

the total throughput at the intersection. To calculate vehicle’s average delay, the delay formulation proposed 

by Webster (Webster, 1958) has been widely used in the literature, which can be formulated as follows: 
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𝑑𝑑 =

1
2𝐶𝐶 �1 − 𝑔𝑔

𝐶𝐶�
2

1 − 𝑔𝑔
𝐶𝐶 𝑋𝑋

+
𝑋𝑋2

2𝑣𝑣(1 − 𝑋𝑋)
− 0.65 �

𝐶𝐶
𝑣𝑣2
�
1
3
𝑋𝑋2+5

𝑔𝑔
𝐶𝐶  (28) 

where  

𝐶𝐶 =cycle length, 

𝑔𝑔 =effective green time, 

𝑣𝑣 =arrival flow-rate, 

𝑐𝑐 =capacity of the intersection approach, 

𝑠𝑠 =saturation flow-rate, 

𝑋𝑋 = 𝑣𝑣
𝑐𝑐

= 𝑣𝑣𝑣𝑣
𝑠𝑠𝑠𝑠

, the degree of saturation. 

The above delay calculation consists of three parts: the first part is the uniform delay; the second part is the 

random delay; and the third part is the empirical adjustment. In (Webster, 1958), optimal cycle lengths were 

obtained by minimizing the total delay at the intersection under given arrival flow-rates. In (Miller, 1963b), 

to obtain optimal settings of splits and cycle lengths, various arrival patterns were taken into account in the 

calculation of random delay. Since it is possible that an approach may have right of way in more than one 

stage within a cycle, SIGSET was proposed in (Allsop, 1971a; Allsop, 1971b) to take into account such a 

case, and Webster’s delay formula was used in the delay estimation. By minimizing the total delay with the 

capacity, cycle lengths, and minimum green time constraints, optimal settings of cycle length and effective 

green time for each stage were obtained. Under similar constraints as those in SIGSET, another program 

called SIGCAP was proposed in (Allsop, 1972; Allsop, 1976) to maximize the practical capacity at 

signalized intersections. 

 Different from stage-based control strategies, phase-based control strategies are developed to 

further consider optimal stage settings. One example can be found in (Improta and Cantarella, 1984), in 

which the constraint of fixed staging was released. Instead, incompatibility of traffic streams was introduced 

as a constraint in the optimization problem. By either minimizing the total delay or maximizing the 

intersection capacity, optimal settings of splits, cycle lengths, and stage settings can be obtained. In (Improta 
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and Cantarella, 1984), the optimization problem was formulated as a binary-mixed-integer-linear- 

programming (BMILP) problem, and solutions were obtained using a branch-and-bound method. 

Besides fixed-time control strategies, there also exist traffic-responsive control strategies that 

utilize the real-time loop detector data in the field. In (De la Breteque and Jezequel, 1979), examples such 

as the Vehicle Interval strategy, the Volume Density strategy, and Miller’s algorithm were provided. In the 

Vehicle Interval strategy, each stage has a set of pre-specified minimum and maximum green times. If a 

vehicle is detected to cross the intersection, a critical interval (CI) will be used to extend the green time to 

allow that vehicle to pass. A similar control logit was used in the Volume Density strategy. But it further 

takes into account queue lengths and vehicles’ waiting times during the red phases while deciding the 

switching time instants. In (Miller, 1963a), a computer program was used to determine whether to switch 

the signal immediately or to delay the switch for a user-defined time interval at every time step. Such a 

decision is made based on the evaluation of the time gain in postponing the switch. If the time gain is 

negative, the signal is switched immediately; otherwise, it remains unchanged for the next time step.  

2.2 For coordinated intersections 

If traffic signals in an arterial are close enough, the dissipation of vehicles is usually in platoons. 

Therefore, it is possible to synchronize the signals so as to allow vehicles travel along the arterial from the 

beginning to the end without stopping. In this case, bandwidth in one traffic direction is defined as the time 

difference between the first and the last vehicles that satisfy the above requirement. In the literature, there 

have been studies trying to maximize the bandwidths along the arterial. For example, with given cycle and 

speed ranges, MAXBAND was introduced in (Little, 1966) to obtain optimal offset settings so as to 

maximize the total bandwidths of a two-way arterial. The optimization problem was formulated as a mixed-

integer-linear-programing (MILP) problem, and a branch-and-bound method was used to solve it. Later in 

(Gartner et al., 1991), MULTI-BAND was proposed to add new features such as determination of left-turn 

phases and different bandwidths among the links into the optimization problem. In (Robertson, 1969), 

TRANSYT (TRAffic Network StudY Tool) was proposed to obtain multi-directional green waves so as to 

minimize the total delay.  Such a model consists of two parts: (i) with given network information such as 
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road geometries, turning ratios at intersection, and demands, a platoon dispersion model is used to describe 

vehicle’s progression inside a link; (ii) a “hill-climbing” method is used to solve the optimization problem. 

Performance Index (PI) is introduced to evaluate the improvements at each optimization step. The program 

will stop when a (local) minimum is found.  

Due to the fact that demands and turning movements at intersections are changing as time elapses, 

traffic-responsive coordinated strategies have also been proposed in the literature. SCOOT (Split, Cycle 

and Offset Optimization Technique), which is a traffic-responsive version of TRANSYT, was proposed in 

(Hunt et al., 1982; Hunt et al., 1981). While keeping similar optimization structure as in TRANSYT, 

SCOOT works in a real-time fashion: it utilizes real-time measurements of flows and occupancies from 

vehicle loop detectors to predict delay and stops; the signal optimizer works in real time, and new signal 

settings are implemented directly on the street. Besides SCOOT, another algorithm called OPAC 

(Optimization Policies for Adaptive Control), which is a model-based traffic-responsive strategy, was 

proposed in (Gartner, 1983). In OPAC, splits, offsets, and cycles are not explicitly considered. A rolling 

horizon approach is used for real-time applications: at time 𝑡𝑡, the optimization method calculates an optimal 

switching scheme for the time interval [𝑡𝑡 − ℎ, 𝑡𝑡 +𝐻𝐻 − ℎ] (𝐻𝐻 > ℎ) based on the data in the time interval 

[𝑡𝑡 − ℎ, 𝑡𝑡] and applies it to the time interval [𝑡𝑡, 𝑡𝑡 + ℎ]; then the optimization time horizon moves to the next 

step, 𝑡𝑡 + ℎ. Note that since OPAC employs complete enumeration in the optimization, it is not real-time 

feasible for multiple intersections (Papageorgiou et al., 2003). 

3. CTM-based network representations and junction models at signalized intersections 

Even though the formulation of CTM is similar in existing studies, the network representations and 

junction models at the signalized intersections can be different due to the fact that the network topologies 

in the study networks can vary a lot. In this section, we will categorize existing studies according to their 

study networks and summarize their network representations as well as the corresponding network junction 

models. 

3.1 Simple one-way streets 
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In (Lo, 1999, 2001), a novel traffic signal control which is based on the CTM was proposed. In 

these studies, links are categorized into three types: source link, exit link, and intermediate link. The cells 

inside a link is labeled from its upstream direction. For a source link, the first cell is modeled as a parking 

lot to store the total demand that intends to enter the network. For an exit link, only one cell is used, and its 

inflow capacity is modeled to reflect the impact of signal control: it equals to the saturation flow-rate, 𝑠𝑠, 

when the traffic light is green, and zero otherwise. Its holding capacity is set to be infinite to serve as a 

reservoir. For an intermediate link, the first cell serves as a traffic signal. For example, for link 𝑙𝑙, the inflow 

capacity of the first cell, 𝑄𝑄𝑙𝑙,1(𝑡𝑡), at time 𝑡𝑡 can be calculated as 

 𝑄𝑄𝑙𝑙,1(𝑡𝑡)  = �𝑠𝑠 𝑡𝑡 ∈ green phase
0 otherwise

 (29) 

Since simple one-way streets were considered in (Lo, 1999, 2001), the signal control was simple without 

merging and diverging behaviors. For the signal control, a constant cycle length with no yellow time was 

used. For signal coordination, initial offsets for the major approaches were introduced at the beginning of 

the analysis time period. Such a simple one-way street network was also used in (He et al., 2010) to study 

different heuristic algorithms to solve the 0-1 mixed-integer-linear-programing (MILP) formulations of 

traffic signal control. 

3.2 One-way streets with merging and diverging behaviors 

In (Lo et al., 2001; Lo and Chow, 2004), studies were extended to more complicated one-way 

streets with merging and diverging behaviors. The effect of a traffic signal was still modeled as in Equation 

(29). Besides the model for the linear junction, models for merging and diverging junctions were also 

introduced. In Figure 3, a signalized merging junction with two upstream cells and one downstream cell, 

and a signalized diverging junction with one upstream cell and two downstream cells are provided.  
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(a)                                                                                   (b) 

Figure 3  Two types of signalized junctions: (a) Merging and (b) Diverging. 

The fluxes through the merging junction can be calculated as  

𝑦𝑦𝐴𝐴
𝑗𝑗 = min�𝑛𝑛𝐴𝐴

𝑗𝑗 ,𝑄𝑄𝐴𝐴
𝑗𝑗 ,𝛿𝛿�𝑁𝑁𝐶𝐶 − 𝑛𝑛𝐶𝐶

𝑗𝑗 ��, 

𝑦𝑦𝐵𝐵
𝑗𝑗 = min�𝑛𝑛𝐵𝐵

𝑗𝑗 ,𝑄𝑄𝐵𝐵
𝑗𝑗 , 𝛿𝛿�𝑁𝑁𝐶𝐶 − 𝑛𝑛𝐶𝐶

𝑗𝑗 ��, 

𝑦𝑦𝐶𝐶
𝑗𝑗 = 𝑦𝑦𝐴𝐴

𝑗𝑗 + 𝑦𝑦𝐵𝐵
𝑗𝑗. 

(30) 

Here, 𝑛𝑛𝑖𝑖
𝑗𝑗, 𝑖𝑖 = 𝐴𝐴,𝐵𝐵,𝐶𝐶, is the number of vehicles in cell i at time step j. 𝑁𝑁𝐶𝐶  is the holding capacity in cell C. 

𝑄𝑄𝑖𝑖
𝑗𝑗, 𝑖𝑖 = 𝐴𝐴,𝐵𝐵, is the maximum number of vehicles that can enter cell C at time step j, which is calculated 

from Equation (29) to reflect the impact of signal control. 𝛿𝛿 is the ratio of the shockwave speed to the free-

flow speed, i.e., 𝛿𝛿 = 𝑤𝑤
𝑣𝑣𝑓𝑓

. For the diverging junction, the following equations are used: 

 𝑦𝑦𝐵𝐵
𝑗𝑗 = 𝛽𝛽𝐵𝐵𝑦𝑦𝐴𝐴

𝑗𝑗 

𝑦𝑦𝐶𝐶
𝑗𝑗 = 𝛽𝛽𝐶𝐶𝑦𝑦𝐴𝐴

𝑗𝑗 

𝑦𝑦𝐴𝐴
𝑗𝑗 = min 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑛𝑛𝐴𝐴

𝑗𝑗

𝑄𝑄𝐴𝐴
𝑗𝑗

min�𝑄𝑄𝐵𝐵
𝑗𝑗 , 𝛿𝛿�𝑁𝑁𝐵𝐵 − 𝑛𝑛𝐵𝐵

𝑗𝑗 ��
𝛽𝛽𝐵𝐵

min�𝑄𝑄𝐶𝐶
𝑗𝑗 ,𝛿𝛿�𝑁𝑁𝐶𝐶 − 𝑛𝑛𝐶𝐶

𝑗𝑗 ��
𝛽𝛽𝐶𝐶

 

(31) 

where 𝛽𝛽𝐵𝐵 and 𝛽𝛽𝐶𝐶 are the turning proportions from A to B and C, respectively, and 𝛽𝛽𝐵𝐵 + 𝛽𝛽𝐶𝐶 = 1. Note that 

with the diverging model in Equation (31), we can see that flows in the upstream cell will be restricted 
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when one of the downstream cells cannot accommodate the assigned number of vehicles and thus becomes 

congested. 

3.3 A four-way roundabout 

In (Feldman and Maher, 2002), traffic dynamics at a four-way roundabout was studied under the 

framework of the CTM. At a roundabout, blocking queues can occur due to the limited storage space. It 

was argued in (Feldman and Maher, 2002) that with the commonly-used triangular or trapezoidal traffic 

flow fundamental diagram, the CTM cannot model the actual platoon dispersion at signalized intersections. 

Therefore, the following family of non-linear speed-density relations is used to capture the real platoon 

dispersion patterns at the intersections: 

 

𝑣𝑣 = 𝑣𝑣0 �1 − �
𝑘𝑘
𝑘𝑘𝑗𝑗
�
𝑙𝑙−1

�

1
1−𝑚𝑚

 (32) 

where 𝑙𝑙 and 𝑚𝑚  are parameters to produce a variety of different shapes for the 𝑣𝑣 − 𝑘𝑘 relations. 

3.4 General road networks 

3.4.1 One dimensional cell representation  

In (Almasri and Friedrich, 2005), three types of networks junctions are considered: linear (1 × 1), 

merging (2 × 1) and diverging (1 × 2). Examples can be found in Figure 4 with 𝑈𝑈 = 2 and 𝐷𝐷 = 2 in this 

study. Let  𝐷𝐷�𝑢𝑢
𝑗𝑗 = min{𝑛𝑛𝑢𝑢

𝑗𝑗 ,𝑄𝑄𝑢𝑢
𝑗𝑗}, and 𝑆𝑆𝑑̅𝑑

𝑗𝑗 = min{𝑄𝑄𝑑𝑑
𝑗𝑗 , 𝑤𝑤
𝑣𝑣𝑓𝑓

(𝑁𝑁𝑑𝑑 − 𝑛𝑛𝑑𝑑
𝑗𝑗 )}. The number of vehicles passing through 

a linear junction can be calculated as 

 𝑦𝑦𝑢𝑢
𝑗𝑗 = min {𝐷𝐷�𝑢𝑢

𝑗𝑗 ,𝑆𝑆𝑑̅𝑑
𝑗𝑗} (33) 

For the diverging junction, the numbers of vehicles passing through the junction boundaries can be 

calculated as 

  
𝑦𝑦𝑢𝑢
𝑗𝑗 = min {𝐷𝐷�𝑢𝑢

𝑗𝑗 ,
𝑆𝑆𝑑̅𝑑1
𝑗𝑗

𝛽𝛽𝑢𝑢,𝑑𝑑1
,
𝑆𝑆𝑑̅𝑑2
𝑗𝑗

𝛽𝛽𝑢𝑢,𝑑𝑑2
} 

𝑦𝑦𝑑𝑑1
𝑗𝑗 = 𝛽𝛽𝑢𝑢,𝑑𝑑1𝑦𝑦𝑢𝑢

𝑗𝑗 

(34) 

41



𝑦𝑦𝑑𝑑2
𝑗𝑗 = 𝛽𝛽𝑢𝑢,𝑑𝑑2𝑦𝑦𝑢𝑢

𝑗𝑗 

where 𝛽𝛽𝑢𝑢,𝑑𝑑1  and 𝛽𝛽𝑢𝑢,𝑑𝑑2  are the turning proportions from 𝑢𝑢  to 𝑑𝑑1  and 𝑑𝑑2 , respectively. For the merging 

junction, there are several cases to calculate the numbers of vehicles passing through the junction 

boundaries: 

(i) When 𝑆𝑆𝑑̅𝑑
𝑗𝑗 ≥ 𝐷𝐷�𝑢𝑢1

𝑗𝑗 + 𝐷𝐷�𝑢𝑢2
𝑗𝑗 , 

 𝑦𝑦𝑑𝑑
𝑗𝑗 = 𝐷𝐷�𝑢𝑢1

𝑗𝑗 + 𝐷𝐷�𝑢𝑢2
𝑗𝑗  

𝑦𝑦𝑢𝑢1
𝑗𝑗 = 𝐷𝐷�𝑢𝑢1

𝑗𝑗  

𝑦𝑦𝑢𝑢2
𝑗𝑗 = 𝐷𝐷�𝑢𝑢2

𝑗𝑗  

(35) 

(ii) When 𝑆𝑆𝑑̅𝑑
𝑗𝑗 < 𝐷𝐷�𝑢𝑢1

𝑗𝑗 + 𝐷𝐷�𝑢𝑢2
𝑗𝑗 , 

 𝑦𝑦𝑢𝑢1
𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷�𝑢𝑢1

𝑗𝑗 ,𝑆𝑆𝑑̅𝑑
𝑗𝑗 − 𝐷𝐷�𝑢𝑢2

𝑗𝑗 ,𝑝𝑝𝑢𝑢1𝑆𝑆𝑑̅𝑑
𝑗𝑗} 

𝑦𝑦𝑢𝑢2
𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷�𝑢𝑢2

𝑗𝑗 ,𝑆𝑆𝑑̅𝑑
𝑗𝑗 − 𝐷𝐷�𝑢𝑢1

𝑗𝑗 ,𝑝𝑝𝑢𝑢2𝑆𝑆𝑑̅𝑑
𝑗𝑗} 

𝑦𝑦𝑑𝑑
𝑗𝑗 = 𝑦𝑦𝑢𝑢1

𝑗𝑗 + 𝑦𝑦𝑢𝑢2
𝑗𝑗  

(36) 

where 𝑝𝑝𝑢𝑢1and 𝑝𝑝𝑢𝑢2 are the proportions of vehicles that come from 𝑢𝑢1 and 𝑢𝑢2. For the signal control, it can 

be done in two ways: (i) restrict the capacity of the controlling cell at the road junction; (ii) introduce a time 

variant 𝑝𝑝(𝑡𝑡) that takes the value of 0 or 1.  

 

Figure 4 Three types of signalized junctions. 

In (Zhang et al., 2010), an extension to Lo’s CTM was proposed which includes the modeling of 

two-way traffic, optimization of phase sequences, and a new formulation of the CTM model. The junctions 

in a signalized network were categorized into the following groups: ordinary, origin, destination, non-
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signalized diverging, signalized diverging, and signalized merging. For the ordinary junction, the 

calculation of flows is formulated as 

 𝑦𝑦𝑖𝑖
𝑗𝑗 = min {𝑛𝑛𝑖𝑖

𝑗𝑗,𝑄𝑄𝑖𝑖
𝑗𝑗,𝑄𝑄𝑖𝑖+1

𝑗𝑗 ,
𝑤𝑤
𝑣𝑣𝑓𝑓

[𝑁𝑁𝑖𝑖+1 − 𝑛𝑛𝑖𝑖+1
𝑗𝑗 ]} (37) 

which is essentially a linear conditional piecewise function (CPF) and can be translated into the following 

constraints with two binary variables 𝜉𝜉1 and 𝜉𝜉2 and a sufficiently large negative constant 𝑈𝑈−: 

 (𝜉𝜉1 + 𝜉𝜉2)𝑈𝑈− ≤ 𝑦𝑦𝑖𝑖
𝑗𝑗 − 𝑛𝑛𝑖𝑖

𝑗𝑗 ≤ 0 

(1 + 𝜉𝜉1 − 𝜉𝜉2)𝑈𝑈− ≤ 𝑦𝑦𝑖𝑖
𝑗𝑗 − 𝑄𝑄𝑖𝑖

𝑗𝑗 ≤ 0 

(1 − 𝜉𝜉1 + 𝜉𝜉2)𝑈𝑈− ≤ 𝑦𝑦𝑖𝑖
𝑗𝑗 − 𝑄𝑄𝑖𝑖+1

𝑗𝑗 ≤ 0 

(2 − 𝜉𝜉1 − 𝜉𝜉2)𝑈𝑈− ≤ 𝑦𝑦𝑖𝑖
𝑗𝑗 −

𝑤𝑤
𝑣𝑣𝑓𝑓

[𝑁𝑁𝑖𝑖+1 − 𝑛𝑛𝑖𝑖+1
𝑗𝑗 ] ≤ 0 

(38) 

Similar translations are used to change the minimization functions in the diverging and merging junctions 

to different sets of constraints with binary variables.  Since the relation between flow and traffic signal 

follows an “if-then” pattern (e.g., Equation (29)), such a relation is translated to a set of equality and 

inequality constraints using two binary variables 𝑧𝑧1(𝑝𝑝, 𝑡𝑡) and 𝑧𝑧2(𝑝𝑝, 𝑡𝑡). 

 −𝑈𝑈 × 𝑧𝑧1(𝑝𝑝, 𝑡𝑡) + 𝜖𝜖 ≤ 𝑡𝑡 − 𝑒𝑒(𝑝𝑝) ≤ 𝑈𝑈 × [1 − 𝑧𝑧1(𝑝𝑝, 𝑡𝑡)] 

−𝑈𝑈 × 𝑧𝑧2(𝑝𝑝, 𝑡𝑡) ≤ 𝑏𝑏(𝑝𝑝) − 𝑡𝑡 ≤ 𝑈𝑈 × [1 − 𝑧𝑧2(𝑝𝑝, 𝑡𝑡)] − 𝜖𝜖 

𝑧𝑧1(𝑝𝑝, 𝑡𝑡) + 𝑧𝑧2(𝑝𝑝, 𝑡𝑡) = 𝑧𝑧(𝑝𝑝, 𝑡𝑡) + 1 

𝑄𝑄𝑖𝑖(𝑡𝑡) = (𝑧𝑧1(𝑝𝑝, 𝑡𝑡) + 𝑧𝑧2(𝑝𝑝, 𝑡𝑡) − 1) × 𝑠𝑠 

�(𝑧𝑧1(𝑝𝑝, 𝑡𝑡) + 𝑧𝑧2(𝑝𝑝, 𝑡𝑡))
𝑝𝑝

= 2 

(39) 

Here, 𝑈𝑈 is a sufficient large positive number, and 𝜖𝜖 is an arbitrary small number. 𝑏𝑏(𝑝𝑝) and 𝑒𝑒(𝑝𝑝) are the 

beginning time and the ending time of phase p, respectively.  
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(a) 

 

(b) 

Figure 5 NEMA phase structure at a four-way intersection. 

To model the NEMA phase structure shown in Figure 5(a), four binary variables, e.g., 𝜆𝜆𝑖𝑖 , 𝑖𝑖 =

1, 2, 3, 4, are used to identify the phase sequence of the eight traffic movements in Figure 5(b). For example, 

𝜆𝜆1 is used to construct the phase sequence of 1 and 2. Let’s denote 𝑜𝑜 as the offset point of an intersection,  

𝑚𝑚 as the intersection ID, 𝑐𝑐 as the cycle ID, ℎ as the barrier point. Then the relations between phase 1 and 

phase 2 can be modelled as follows:  

 𝑏𝑏(𝑚𝑚, 1, 𝑐𝑐) = 𝜆𝜆1 × 𝑜𝑜(𝑚𝑚) + 𝜆𝜆1 × 𝑙𝑙 × (𝑐𝑐 − 1) + (1 − 𝜆𝜆1) × 𝑒𝑒(𝑚𝑚, 2, 𝑐𝑐) 

𝑏𝑏(𝑚𝑚, 2, 𝑐𝑐) = (1 − 𝜆𝜆1) × 𝑜𝑜(𝑚𝑚) + (1 − 𝜆𝜆1) × 𝑙𝑙 × (𝑐𝑐 − 1) + 𝜆𝜆1 × 𝑒𝑒(𝑚𝑚, 1, 𝑐𝑐) 

𝑒𝑒(𝑚𝑚, 1, 𝑐𝑐) = 𝑏𝑏(𝑚𝑚, 1, 𝑐𝑐) + 𝑔𝑔(𝑚𝑚, 1) 

𝑒𝑒(𝑚𝑚, 2, 𝑐𝑐) = 𝑏𝑏(𝑚𝑚, 2, 𝑐𝑐) + 𝑔𝑔(𝑚𝑚, 2) 

𝑔𝑔(𝑚𝑚, 1) + 𝑔𝑔(𝑚𝑚, 2) = ℎ(𝑚𝑚) 

(40) 

where  𝑏𝑏(𝑚𝑚, 𝑖𝑖, 𝑐𝑐) and 𝑒𝑒(𝑚𝑚, 𝑖𝑖, 𝑐𝑐), 𝑖𝑖 = 1, 2, are the beginning and ending times for phase i, respectively.  

In (Su et al, 2013), the study site in the NGSIM project (http://ngsim-community.org/), which is a 

segment of the Lankershim Boulevard in Los Angeles, California, was studied under the CTM framework. 

The study network contains different types of junctions, e.g., linear, merge, and diverge, which are shown 
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in Figure 4. Therefore, junction models are introduced to calculate the corresponding fluxes through the 

boundaries. The flux 𝑓𝑓𝑢𝑢
𝑗𝑗 through the linear boundary is calculated as 

 𝑓𝑓𝑢𝑢
𝑗𝑗 = min {𝐷𝐷𝑢𝑢

𝑗𝑗 ,𝑆𝑆𝑑𝑑
𝑗𝑗}  (41) 

where 𝐷𝐷𝑢𝑢
𝑗𝑗 is the demand (sending flow), and 𝑆𝑆𝑑𝑑

𝑗𝑗 is the supply (receiving flow) at time step j. The fluxes 

through a merging junction can be calculated as 

 𝑓𝑓𝑑𝑑
𝑗𝑗 = min�∑𝐷𝐷𝑢𝑢

𝑗𝑗 ,𝑆𝑆𝑑𝑑
𝑗𝑗�,  

𝑓𝑓𝑢𝑢
𝑗𝑗 = 𝑝𝑝𝑢𝑢𝑓𝑓𝑑𝑑

𝑗𝑗 
(42) 

where 𝑝𝑝𝑢𝑢 is proportional to the link demand 𝐷𝐷𝑢𝑢
𝑗𝑗 at the merging junction. The fluxes through a diverging 

junction can be calculated as 

 
𝑓𝑓𝑢𝑢
𝑗𝑗 = min

𝑑𝑑
�𝐷𝐷𝑢𝑢

𝑗𝑗 ,
𝑆𝑆𝑑𝑑
𝑗𝑗

𝛽𝛽𝑢𝑢,𝑑𝑑
�, 

𝑓𝑓𝑑𝑑
𝑗𝑗 = 𝛽𝛽𝑢𝑢,𝑑𝑑𝑓𝑓𝑢𝑢

𝑗𝑗 

(43) 

where 𝛽𝛽𝑢𝑢,𝑑𝑑 is the turning proportion from cell u to cell d. 

Because there exists left-turn bays in real signalized road networks, a one-way road section was 

divided by three links according to the allowable movements in (Su et al, 2013), which is shown in Figure 

6. The dividing point is the location where the left-turn bay starts. The ends of the three links (Links 2 to 4) 

are controlled by a signal. Therefore, the link capacity is the saturation flow-rate when the traffic light is 

green, and zero when it is red. However, due to the modeling limitation, in (Su et al, 2013) the model was 

relaxed to allow the discharging flow of right-turn vehicles during the red time to be the same as that during 

the green time. And also, the impact of pedestrians on the turning traffic was not considered in (Su et al, 

2013). 
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Figure 6 Link representation at a one-way road section. 

 

3.4.2 Two dimensional cell representation: cells and sub-cells  

In (Li, 2010), each link was divided into four zones: merging, propagation, diverging, and departure, 

which is shown in Figure 7. Junctions are categorized into three types: ordinary, merging and diverging. In 

the merging zone, there are three upstream cells for through, left-turn, and right-turn vehicles, denoted as 

TH, LT, and RT, respectively. The downstream cell is denoted as 𝑑𝑑. The junction model is formulated as 

 

 𝑦𝑦𝑑𝑑,𝑖𝑖
𝑗𝑗 = min�𝑛𝑛𝑖𝑖

𝑗𝑗,𝑄𝑄𝑖𝑖
𝑗𝑗 , 𝛿𝛿�𝑁𝑁𝑑𝑑 − 𝑛𝑛𝑑𝑑

𝑗𝑗 �� ,     𝑖𝑖 = 𝑇𝑇𝑇𝑇, 𝐿𝐿𝐿𝐿,𝑅𝑅𝑅𝑅 (44) 

where 𝛿𝛿 = 1 if 𝑛𝑛𝑖𝑖
𝑗𝑗 ≤ 𝑄𝑄𝑖𝑖

𝑗𝑗, and otherwise, 𝛿𝛿 = 𝑤𝑤
𝑣𝑣𝑓𝑓

 . In the propagation zone, the junction model is formulated 

as 

 
𝑦𝑦𝑖𝑖
𝑗𝑗 = min�𝑛𝑛𝑖𝑖

𝑗𝑗,𝑄𝑄𝑖𝑖
𝑗𝑗,
𝑤𝑤
𝑣𝑣𝑓𝑓

[𝑁𝑁𝑖𝑖+1 − 𝑛𝑛𝑖𝑖+1
𝑗𝑗 ]� = min {𝐷𝐷�𝑖𝑖

𝑗𝑗, 𝑆𝑆𝑖̅𝑖+1
𝑗𝑗 } (45) 
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Figure 7 Four zones at a signalized intersection approach. 

In the diverging zone, it is represented by a single cell i+1. Inside this zone, it is possible to have 

vehicle blockages caused by the conflicting movements between left-turn and through vehicles. Therefore, 

cell i+1 is further divided into two sub-cells: one for left-turn vehicles while the other for through vehicles. 

In the diverging zone, it is further divided into three sub-zones: one is designated for left-turn vehicles only, 

one for through vehicles only, and the upstream one shared by both left-turn and through vehicles. Detailed 

sub-cell representation is provided in Figure 8. 

 

Figure 8 Sub-cell representation of a diverging cell. 

To explicitly consider the turning bay effects, the capacities for the two sub-cells are calculated as  

 𝑁𝑁𝑖𝑖+1,𝐿𝐿
𝑗𝑗 = 𝑁𝑁𝑖𝑖+1,1

𝑗𝑗 + 𝑁𝑁𝑖𝑖+1,3
𝑗𝑗  

𝑁𝑁𝑖𝑖+1,𝑇𝑇
𝑗𝑗 = 𝑁𝑁𝑖𝑖+1,2

𝑗𝑗 + 𝑁𝑁𝑖𝑖+1,3
𝑗𝑗  

(46) 
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Then the diverging model can be calculated as 

 
𝑦𝑦𝑖𝑖
𝑗𝑗 = min {𝐷𝐷�𝑖𝑖

𝑗𝑗, 𝑆𝑆𝑖̅𝑖+1
𝑗𝑗 ,

𝑆𝑆𝑖̅𝑖+1,𝐿𝐿
𝑗𝑗

𝛽𝛽𝑖𝑖+1,𝐿𝐿
𝑗𝑗 ,

𝑆𝑆𝑖̅𝑖+1,𝑇𝑇
𝑗𝑗

𝛽𝛽𝑖𝑖+1,𝑇𝑇
𝑗𝑗 } 

𝑦𝑦𝑖𝑖,𝐿𝐿
𝑗𝑗 = 𝑦𝑦𝑖𝑖

𝑗𝑗𝛽𝛽𝑖𝑖+1,𝐿𝐿
𝑗𝑗  

𝑦𝑦𝑖𝑖,𝑇𝑇
𝑗𝑗 = 𝑦𝑦𝑖𝑖

𝑗𝑗𝛽𝛽𝑖𝑖+1,𝑇𝑇
𝑗𝑗  

(47) 

where 𝛽𝛽𝑖𝑖+1,𝐿𝐿
𝑗𝑗  and 𝛽𝛽𝑖𝑖+1,𝑇𝑇

𝑗𝑗  are the ratios of left-turn and through vehicles inside the diverging zone, 

respectively. In the departure zone, the flow capacity 𝑄𝑄𝑖𝑖
𝑗𝑗 depends on two factors: the saturation flow-rate 𝑠𝑠 

and the green time of the corresponding movement 𝑔𝑔𝑖𝑖
𝑗𝑗, which can be formulated as 

 𝑄𝑄𝑖𝑖
𝑗𝑗 = 𝑠𝑠𝑔𝑔𝑖𝑖

𝑗𝑗 (48) 

In (Gao et al., 2015), due to the existence of multiple lane groups at a signalized intersection, the 

traditional cell representation was further enhanced with the introduction of sub-cells. An example of the 

sub-cell representation is provided in Figure 9. At the intersection, there are virtual cells A and E to handle 

diverging and merging traffic at approaches and exits. Virtual cell A contains cell 𝑎𝑎, and virtual cell E 

contains cell e. Cell A is a two-dimensional cell which contains three sub-cells for the left-turn, through, 

and right-turn movements. Cell E is a one dimensional cell which holds the merging flows to exit the 

intersection.  In addition, there is an overlapping cell C to handle conflicts between left-turn and through 

movements when the left-turn is permissive. Under this cell presentation, the path of cells for the through 

and left-turn movements is 𝑎𝑎 → 𝐴𝐴 → 𝐶𝐶 → 𝐸𝐸 → 𝑒𝑒, while it is  𝑎𝑎 → 𝐴𝐴 → 𝐸𝐸 → 𝑒𝑒 for the right-turn movements. 

Vehicle movements between cell A and a, or between E and e, are implemented immediately since cells A 

and E are virtual cells. Therefore, to move from cell a to cell e, it takes two time steps for through and left-

turn vehicles, and only one time step for right-turn vehicles.  

With lane channelization, the number of vehicles in each virtual diverging sub-cell can be 

calculated as follows: 
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 𝑛𝑛𝐴𝐴𝑖𝑖
𝑗𝑗 = �𝛽𝛽𝑖𝑖,𝑘𝑘

𝑗𝑗 𝑛𝑛𝑎𝑎𝑘𝑘
𝑗𝑗

𝑘𝑘

 

𝑁𝑁𝐴𝐴𝑖𝑖
𝑗𝑗 = �𝛽𝛽𝑖𝑖,𝑘𝑘

𝑗𝑗 𝑁𝑁𝑎𝑎𝑘𝑘
𝑗𝑗

𝑘𝑘

 

𝑄𝑄𝐴𝐴𝑖𝑖
𝑗𝑗 = �𝛽𝛽𝑖𝑖,𝑘𝑘

𝑗𝑗 𝑄𝑄𝑎𝑎𝑘𝑘
𝑗𝑗

𝑘𝑘

 

(49) 

Here, 𝑛𝑛𝐴𝐴𝑖𝑖
𝑗𝑗  is the number of vehicles in the virtual sub-cell 𝐴𝐴𝑖𝑖, 𝑖𝑖 =left-turn, through, and right-turn. 𝛽𝛽𝑖𝑖,𝑘𝑘

𝑗𝑗 is the 

turning proportion of movement 𝑖𝑖 from lane k at the approach 𝑎𝑎.  𝑁𝑁𝐴𝐴𝑖𝑖
𝑗𝑗   and 𝑄𝑄𝐴𝐴𝑖𝑖

𝑗𝑗  are the maximum number 

of vehicles and  the flow capacities for the sub-cell 𝐴𝐴𝑖𝑖, respectively. 𝑁𝑁𝑎𝑎𝑘𝑘
𝑗𝑗   and 𝑄𝑄𝑎𝑎𝑘𝑘

𝑗𝑗  are the maximum number 

of vehicles and  the flow capacities for the lane k at the approach 𝑎𝑎, respectively.  

 

Figure 9 Sub-cell representation of a signalized intersection. 

For the merging behavior at cell E, its upstream is three virtual sub-cells 𝐴𝐴𝑖𝑖, 𝑖𝑖 = 1, 2, 3, while its 

downstream is cell 𝑒𝑒 with M multiple lanes, e.g., M=3. Then the calculation of vehicle flows is formulated 

as follows: 

Characteristics of cell E: 𝑄𝑄𝐸𝐸
𝑗𝑗 = �𝑄𝑄𝑒𝑒𝑚𝑚

𝑗𝑗
𝑀𝑀

𝑚𝑚

 (50) 
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𝑁𝑁𝐸𝐸
𝑗𝑗 = �𝑁𝑁𝑒𝑒𝑚𝑚

𝑗𝑗
𝑀𝑀

𝑚𝑚

 

𝑛𝑛𝐸𝐸
𝑗𝑗 = �𝑛𝑛𝑒𝑒𝑚𝑚

𝑗𝑗
𝑀𝑀

𝑚𝑚

 

 

If 𝑆𝑆𝐸𝐸
𝑗𝑗 ≥ ∑ 𝐷𝐷𝐴𝐴𝑖𝑖

𝑗𝑗3
𝑖𝑖=1  

𝑦𝑦𝐴𝐴𝑖𝑖
𝑗𝑗 = 𝐷𝐷𝐴𝐴𝑖𝑖

𝑗𝑗  

𝑦𝑦𝐸𝐸
𝑗𝑗 = �𝑦𝑦𝐴𝐴𝑖𝑖

𝑗𝑗
3

𝑖𝑖=1

 
(51) 

If 𝑆𝑆𝐸𝐸
𝑗𝑗 < ∑ 𝐷𝐷𝐴𝐴𝑖𝑖

𝑗𝑗3
𝑖𝑖=1  

𝑦𝑦𝐴𝐴𝑖𝑖
𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷𝐴𝐴𝑖𝑖

𝑗𝑗 ,𝑆𝑆𝐸𝐸
𝑗𝑗 − � 𝐷𝐷𝐴𝐴𝑤𝑤

𝑗𝑗
3

𝑤𝑤=1,𝑤𝑤≠𝑖𝑖

,𝑝𝑝𝐴𝐴𝑖𝑖𝑆𝑆𝐸𝐸
𝑗𝑗} 

𝑦𝑦𝐸𝐸
𝑗𝑗 = �𝑦𝑦𝐴𝐴𝑖𝑖

𝑗𝑗
3

𝑖𝑖=1

 

(52) 

Flow distribution at cell e: 𝑦𝑦𝑒𝑒𝑖𝑖
𝑗𝑗 =

𝑆𝑆𝑒𝑒𝑖𝑖
𝑗𝑗

𝑆𝑆𝐸𝐸
𝑗𝑗  𝑦𝑦𝐸𝐸

𝑗𝑗 (53) 

Furthermore, to handle the conflicts between left-turn and through movements when the left-turn 

is permissive, an overlapping cell C is introduced. The constraints on the left-turn and through movements 

in cell C can be formulated as 

 𝑛𝑛𝐶𝐶,𝐿𝐿
𝑗𝑗 × 𝑛𝑛𝐶𝐶,𝑇𝑇ℎ

𝑗𝑗 = 0 

𝑦𝑦𝐶𝐶,𝐿𝐿
𝑗𝑗+1 × 𝑦𝑦𝐶𝐶,𝑇𝑇ℎ

𝑗𝑗+1 = 0 
(54) 

Whether a left-turn or a through vehicle to occupy the overlapping cell C is determined using a random 

draw with probability 𝑝𝑝𝐿𝐿 for the left-turn movement and 1 − 𝑝𝑝𝐿𝐿 for the through movement. The impact of 

traffic signal is modelled as Equation (29). 

4. CTM-based signal control strategies 

4.1 Objective functions 

4.1.1 Delay minimization  
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In (Lo, 1999, 2001), the delay was defined as the additional time that a vehicle stays in a cell. Then 

the delay in cell 𝑖𝑖 at time step 𝑗𝑗, 𝑑𝑑𝑖𝑖
𝑗𝑗, can be calculated as  

 𝑑𝑑𝑖𝑖
𝑗𝑗 = 𝑛𝑛𝑖𝑖

𝑗𝑗 − 𝑦𝑦𝑖𝑖
𝑗𝑗 (55) 

The total vehicle delay in a network can be calculated as  

 𝐽𝐽 = ��𝑑𝑑𝑖𝑖
𝑗𝑗

𝑗𝑗𝑖𝑖

 (56) 

Then the objective function is to minimize the total network delay in Equation (56). 

In (Almasri and Friedrich, 2005), it was assumed that during an updating time step, the relationship 

between a vehicle’s delay and its speed follows a linear trend with a negative slope. That is, the maximum 

delay for a vehicle is the updating time step when it is fully stopped, while the minimum delay is zero when 

it travels at the free-flow speed. With this assumption, the delay calculation is the same as those in Equations 

(55) and (56) and thus omitted here. Simulation results demonstrated that compared with the Kimber-Hollis 

and Akcelik delay calculations, CTM provides good estimation accuracy under both uncongested and 

congested conditions. 

In (Li, 2010), it was proposed to minimize the total system delay. But different from Equation (55), 

a weighted coefficient was introduced to modify the relative importance of each cell. Then the objective 

function can be formulated as 

 
min [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = Δ𝑇𝑇��𝑤𝑤𝑢𝑢(𝑛𝑛𝑢𝑢

𝑗𝑗 − � 𝑦𝑦𝑑𝑑
𝑗𝑗

𝑑𝑑∈Γ(𝑢𝑢)

)
𝑢𝑢

𝐽𝐽

𝑗𝑗

 (57) 

where 𝑤𝑤𝑢𝑢 is the weighted coefficient, and Γ(𝑢𝑢) is the set of downstream cells of cell 𝑢𝑢. 

4.1.2 Minimization of Performance Index 

In TRANSYT, Performance Index (PI), which is a weighted combination of the delay and stops on 

all links in the network, is used as the measure of performance. A similar concept was then introduced in 

(Feldman and Maher, 2002). The performance index in CTM, 𝑃𝑃𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶, is defined as the average network 
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occupancies during the cycle time, which is calculated using the sum of occupancies in each cell during the 

cycle time divided by the cycle time. If a cycle has 𝐽𝐽 time steps, then PICTM can be calculated as 

 
PICTM = (��𝑛𝑛𝑖𝑖

𝑗𝑗
𝑁𝑁

𝑖𝑖=1

𝐽𝐽

𝑗𝑗=1

)/M (58) 

Then the optimization problem is to find a set of signal settings that generates the lowest PICTM. 

4.1.3 Maximization of system throughput 

In (Li, 2010), it was also proposed to optimize the signal settings to maximize the system 

throughput. The network throughput are defined as the sum of throughputs at all sink cells, and the objective 

function is formulated as  

 
max(𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝 = �� � 𝑦𝑦𝑢𝑢

𝑗𝑗

𝑢𝑢∈Γ−(𝑑𝑑)𝑑𝑑∈Φ

𝐽𝐽

𝑗𝑗

 )  (59) 

Where Φ is the set of sink cells, Γ−(𝑑𝑑) is the set of upstream cells of cell 𝑑𝑑, and 𝐽𝐽 is the total time steps. 

4.1.4 Minimization of a combination of delay and early arrival flow 

In (He et al., 2010), a different objective function was proposed to minimize the network delay as 

well as the early arrival flow, which can be formulated as follows: 

 min(𝛼𝛼�� j × 𝑦𝑦𝑖𝑖
𝑗𝑗

𝑗𝑗𝑖𝑖∈Φ

+ 𝛽𝛽�� j × 𝑦𝑦𝑖𝑖
𝑗𝑗

𝑗𝑗𝑖𝑖∉Φ

) (60) 

where Φ is the set of destination cells. 𝛼𝛼 is the coefficient for delay, while 𝛽𝛽 is the coefficient for the early 

arrival flow to avoid vehicle holding at a cell even though there is capacity available downstream. In the 

minimization problem, constraints were imposed on the regular cells, origin cells, destination cells, as well 

as the cells adjacent to the signalized intersections. Other constraints such as minimum and maximum green 

times were also considered. In addition, it was required that the flow conservation should be hold so that 

after a simulation time period of T, all vehicles in the network are cleared. 

4.1.5 Minimization of mean excess delay 

Traditionally, demand is considered constant at the modeling of the CTM. But in reality, demand 

changes from time to time. In (Zhang et al., 2010), stochastic demands at the origins were considered. A 
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set of demand scenarios, Ω = {1, 2, 3, … ,𝜑𝜑}, are considered, and each scenario represents a set of demand 

combinations, 𝑑𝑑𝜔𝜔 = {𝑑𝑑1𝜔𝜔,𝑑𝑑2𝜔𝜔, … ,𝑑𝑑𝑟𝑟𝜔𝜔, … }, ∀𝑟𝑟 ∈ 𝑂𝑂, which will happen with a probability of 𝑝𝑝𝜔𝜔. Due to the 

randomness in the origin demands, (Zhang et al., 2010) aimed to minimize the excess delay which is caused 

by those high-consequence scenarios with collective probability of occurrence of 1 − 𝛼𝛼 , where 𝛼𝛼  is a 

specified confidence level (e.g., 80%). Let’s denote the delay for scenario 𝜔𝜔 as 𝐿𝐿𝜔𝜔. Then, for 𝐿𝐿1 < 𝐿𝐿2 <

𝐿𝐿𝜔𝜔𝑎𝑎−1 < 𝐿𝐿𝜔𝜔𝑎𝑎 < ⋯ < 𝐿𝐿𝜔𝜔 , the definition of 𝛼𝛼  can be explained as ∑ 𝑝𝑝𝜔𝜔
𝜔𝜔𝛼𝛼
1 ≥ 𝛼𝛼 ≥ ∑ 𝑝𝑝𝜔𝜔

𝜔𝜔𝛼𝛼−1
𝜔𝜔 . That also 

means there only can be a chance of 1 − 𝛼𝛼 to have delay greater than or equal to 𝐿𝐿𝜔𝜔𝛼𝛼. Then the mean excess 

delay can be formulated as 

 
𝑍𝑍𝜔𝜔𝛼𝛼 =

1
1 − 𝛼𝛼 �

��𝑝𝑝𝜔𝜔

𝜔𝜔𝛼𝛼

𝜔𝜔

− 𝛼𝛼�𝐿𝐿𝜔𝜔𝛼𝛼 + � 𝑝𝑝𝜔𝜔𝐿𝐿𝜔𝜔

φ

𝜔𝜔𝛼𝛼+1

� (61) 

This study tried to find a set of robust timing plans to minimize the mean excess delay.  

4.2 Optimization methods 

4.2.1 Mixed-integer programing problems 

In the minimization problem in (Lo, 1999, 2001), constraints on minimum and maximum green 

times, and offsets were introduced, and the offset and the green times were used as decision variables. To 

eliminate the minimum sign in the calculation of boundary flux 𝑦𝑦𝑖𝑖
𝑗𝑗, the “less than or equal to” constraints 

are used. Furthermore, the mixed-integer programing technique with the introduction of two binary 

variables is introduced to model the “if-then” conditions in Equation (29).  To solve the mixed-integer-

linear-programing (MILP) problems, commercial software packages such as CPLEX can be used. 

4.2.2 Genetic Algorithms 

Since the size of MILP problem increases dramatically as the network size increases, later in (Lo 

et al., 2001), a so-called dynamic intersection signal control optimization (DISCO) was proposed. The 

heuristic approach is based on the Genetic Algorithm (GA) and aims to find a good, rather than an optimal 

solution. In the GA problem, the durations of effective green and red phases for the intersection are coded 

as a series of chromosomes. Two types of GA methods are proposed: (i) network-wide GA (Net-GA) which 
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considers the timing plans of all intersections in the network simultaneously; (ii) sequential GA (S-GA) 

which only consider the timing plan for one intersection at a time. Analysis results showed that DISCO 

performs better than TRANSYT in optimizing the traffic signals with a reduction in delay up to 33% under 

a wide range of demand patterns. In (Lo and Chow, 2004), DISCO was extended to optimize the network 

with more flexible signal settings. Three different signal control strategies were analyzed: fixed-time (FT) 

plan, variable green fixed cycle (VGFC), and variable green no cycle (VGNC). Again, the GA algorithm 

was used. Analysis results showed that all DISCO plans outperform the existing plan. It was interesting to 

find that the FT plan performs better than the VGFC and VGNC plans, which may be due to the large 

variable space introduced by these two dynamic plans and the limitation of the GA algorithm to find the 

truly global solution. However, the study also showed that delay can be further reduced if the output from 

the FT plan is used as an initial solution in the VGFC and VGNC plans. 

In (Almasri and Friedrich, 2005), the GA algorithm was used to optimize the offsets in the network. 

Two types of GA algorithms were used: (i) parallel GA (PGA) with a simultaneous search over all offset 

times; (ii) serial GA (SGA) with only one offset value and only one part of the chromosome updated each 

time. Simulation studies showed that SGA can reduce the CPU time significantly and performs as well as 

PGA when the study network has low interdependencies among the links. But it was argued that the 

performance of SGA may decay as the network gets larger with increasing multiple dependencies of the 

offsets. The C++ GAlib (Genetic algorithm library) written by Matthew Wall at MIT was used in this study. 

In (Li, 2010), the GA method was used to obtain a near-optimal signal timing plan. The decision 

variables are the cycle length, the green time split, and the offset of each signal. Instead of having a common 

network cycle length, this study allowed the cycle length at certain intersections to be half of the common 

one. Simulation results demonstrated that the proposed model performs far better than TRANSYT-7F under 

a wide range of traffic conditions with less total delay and higher network throughput, especially at high 

traffic volumes. 

Similar to the previous studies, the GA method was also used in (Zhang et al., 2010) to find a robust 

timing plan. 
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4.2.3 Linear relaxation combined with heuristic methods 

It was argued in (He et al., 2010) that it becomes impossible to solve the MILP problem in the CTM 

with commercial software as the network scales up. At the same time, it also cannot guarantee the 

commonly-used GA method can reach a local optimal given the analysis time frame. Therefore, the Linear 

Relaxation (LR) method was introduced in the MILP problem in (He at al., 2010) to allow the 0-1 variables 

to take continuous values within the region of [0, 1]. After the problem is solved, non-integer solutions are 

obtained. Then three heuristic methods are used to convert these infeasible solutions into feasible ones: the 

dive-and-fix method, the ratio-cluster method, and the cumulative-departure method. 

(i) The dive-and-fix method: the idea of the method is to find those fractional variables in the solutions 

from the LR problem, and try to round them to the nearest integers, either 0 or 1. Each time after 

the LR problem is solved, the most integer-like variable is rounded to be 0 or 1, and the LR problem 

is solved again. Such a process is repeated until all variables are integers of 0 or 1. 

(ii) The ratio-cluster method: The fractional ratios obtained from the LR method can be considered as 

the green time allocations for a given cycle length. The ratio-cluster method tries to utilize the green 

time ratios obtained from the LR method to generate a feasible MILP solution. The method first 

keeps track of the changes of green times from the LR solution and divides the total time steps into 

several clusters. Then suitable integer cycles are then introduced into each cluster to match the 

average green ratios and minimize the cumulative green time error. 

(iii) The cumulative-departure method: The smooth cumulative departure curve obtained from the LR 

solution should be the optimal one since it has less restrictions on the constraints of variables. 

Therefore, this method tries to find a feasible binary solution to generate a cumulative curve to 

better match the one obtained from the LR.  

4.2.4 The hill-climbing method 

Similar to TRANSYT, a hill-climbing method was also used in (Feldman and Maher, 2002) to 

compare the performance with the GA method. Given an initial set of signal timings, the program first 

calculates the PI for the whole network. Then the program changes the offset (and/or green times) of one 
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of the signals successively with predefined step sizes until a minimum PI is found. Each offset (and/or green 

times) is optimized in turn in this way, and a final set of signal settings is obtained by repeating this process 

a number of times. It was shown in (Feldman and Maher, 2002) that the hill-climbing method performs 

reasonably well if the time budget is low, while the GA algorithm performs better if the time budget is high. 
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PART III: Average models for signalized junctions 

In this part, we introduce an analytical approach to derive invariant averaged models for signalized 

intersections. As a starting point, we focus on a simpler case, a signalized linear junction. We first introduce 

three models with binary signals and derive their averaged counterparts by replacing the cyclic signal 

control with its effective green ratio in Section 1. In Section 2, we apply the local forms of these three 

averaged models as entropy conditions at the junction. We solve the corresponding Riemann problems and 

derive the invariant forms of these three averaged models.  In Section 3, we identify the correctness of these 

three invariant averaged models using the constraint of maximum averaged junction flux. We will show 

that only one of them can correctly catch such a constraint under various traffic conditions. We will also 

show that different non-invariant averaged models can lead to the same invariant form. In Section 4, we 

analyze the approximation accuracy of the correct invariant averaged model in a signalized ring road, 

considering the impact of initial densities, cycle lengths, and traffic flow fundamental diagrams. In Section 

5, we extend our analytical framework to a more complicated case, a signalized merging junction. 

Following similar procedures, we derive the corresponding invariant averaged model for the signalized 

merging junction. 

 

1. Models with binary signals and the averaged counterparts at a linear junction 

For a signalized linear junction shown in Figure 10, let's assume the traffic signal is installed at 

𝑥𝑥 = 0. The upstream section (𝑥𝑥 < 0) is denoted as link 1 with length of  𝐿𝐿1, while the downstream section 

(𝑥𝑥 > 0) is denoted as link 2 with length of 𝐿𝐿2. The traffic flow fundamental diagram is of the same type for 

both links and is denoted as  𝑞𝑞𝑎𝑎 = 𝑄𝑄(𝑘𝑘𝑎𝑎), 𝑎𝑎 ∈ {1,2}. 
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Figure 10 A signalized road link. 

 

1.1 Three models with binary signals 

On link𝑎𝑎, the following definitions of demand and supply were introduced in (Lebacque, 1996) 

(similar to the maximum sending and receiving flows in (Daganzo, 1995)):  

 Da(x, t) = Q(min{ka(x, t), ka,c} ) 

𝑆𝑆𝑎𝑎(𝑥𝑥, 𝑡𝑡)  = 𝑄𝑄(max{𝑘𝑘𝑎𝑎(𝑥𝑥, 𝑡𝑡), 𝑘𝑘𝑎𝑎,𝑐𝑐}) 
(62) 

where 𝑘𝑘𝑎𝑎,𝑐𝑐 is the critical density of link 𝑎𝑎. Then the flow-rate 𝑞𝑞𝑎𝑎(𝑥𝑥, 𝑡𝑡), capacity 𝐶𝐶𝑎𝑎, density 𝑘𝑘𝑎𝑎(𝑥𝑥, 𝑡𝑡), and 

speed 𝑣𝑣𝑎𝑎(𝑥𝑥, 𝑡𝑡) can be uniquely determined through its demand and supply using the following equations: 

 qa(x, t) = min{Da(x, t), Sa(x, t)} 

Ca = max {Da(x, t), Sa(x, t)} 

ka(x, t) = 𝓡𝓡(Da(x, t)/Sa(x, t)) = �
𝐃𝐃−1(CaDa(x, t)/Sa(x, t)) Da(x, t) ≤ Sa(x, t)
𝐒𝐒−1(CaSa(x, t)/Da(x, t)) Da(x, t) > Sa(x, t)

 

va(x, t) = qa(x, t)/ka(x, t) 

(63) 

Thus, different from traditional approaches that use density as the state variable, the demand and supply 

pair,𝑈𝑈𝑎𝑎(𝑥𝑥, 𝑡𝑡) = (𝐷𝐷𝑎𝑎(𝑥𝑥, 𝑡𝑡), 𝑆𝑆𝑎𝑎(𝑥𝑥, 𝑡𝑡)), can be used to represent the traffic conditions (Jin, 2009). Initially, 

vehicles are assumed to be uniformly distributed along each link, and therefore, the initial conditions can 

be simply written as  

 Ua = Ua(x, t = 0) = (Da, Sa),      a ∈  {1,2} (64) 

where 𝐷𝐷𝑎𝑎 and 𝑆𝑆𝑎𝑎 are constant values. 
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For the traffic signal at 𝑥𝑥 = 0, the cycle length is 𝑇𝑇, and the effective green time is 𝜂𝜂𝜂𝜂 with 𝜂𝜂 ∈

(0,1). An indicator function 𝛿𝛿(𝑡𝑡) is introduced to describe the binary control of signals, which is formulated 

as  

 δ(t) = � 1           t ∈ [nT, nT + ηT)
0  t ∈ [nT + ηT, (n + 1)T)   with  n = 0,1,2, . ..  (65) 

For constant loading problems (or with infinitely-long links), the junction flux 𝑞𝑞 can be determined from 

the global settings of initial demand and supply as well as the binary signals, and can be written in the 

following three forms: 

 q = F1�U1, U2;δ(t)� = δ(t)min {D1, S2}                          (a)  

q = F2(U1, U2;δ(t)) = min{δ(t)D1, S2}                          (b) 

𝑞𝑞 = 𝐹𝐹3(𝑈𝑈1,𝑈𝑈2;𝛿𝛿(𝑡𝑡)) = min{𝐷𝐷1,𝛿𝛿(𝑡𝑡)𝑆𝑆2}                          (c) 

(66) 

However, at the junction (𝑥𝑥 = 0), the following forms with the local settings of supply and demand should 

be used: 

 q = f1(U1(0−, t), U2(0+, t); δ(t)) = δ(t)min{D1(0−, t), S2(0+, t)}              (a) 

q = f2(U1(0−, t), U2(0+, t); δ(t)) = min{δ(t)D1(0−, t), S2(0+, t)}              (b) 

q = f3(U1(0−, t), U2(0+, t); δ(t)) = min{D1(0−, t), δ(t)S2(0+, t)}              (c) 

(67) 

 

Definition 1   

(Global and local flux functions) 

Functions like 𝐹𝐹(𝑈𝑈1,𝑈𝑈2) are called global flux functions since initial traffic conditions 𝑈𝑈1 and 𝑈𝑈2 are used. 

Functions like 𝑓𝑓(𝑈𝑈1(𝑥𝑥 = 0−, 𝑡𝑡),𝑈𝑈2(𝑥𝑥 = 0+, 𝑡𝑡))  are called local flux functions since only local traffic 

conditions such as 𝑈𝑈1(0−, 𝑡𝑡) and 𝑈𝑈2(0+, 𝑡𝑡) at the junction are used. 

 

Definition 2   

(Invariance) 
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For any global flux function 𝐹𝐹(𝑈𝑈1,𝑈𝑈2), it is called invariant if the same global form can be derived by 

introducing its local from 𝑓𝑓(𝑈𝑈1(0−, 𝑡𝑡),𝑈𝑈2(0+, 𝑡𝑡)) as an entropy condition at the junction and solving the 

arising Riemann problems. Otherwise, it is non-invariant. 

 

Theorem 3 

The three models with binary signals in Equation (66) are invariant and are equivalent to each other. 

Proof: During the red time period, q = 0, and thus the flux function is automatically invariant. During the 

green time period, we have Fi(U1, U2; δ(t) = 1) = min{D1, S2}  for  i = {1,2,3}. In (Jin et al., 2009), it has 

been shown that such a flux function is invariant. Therefore, even though we have binary signals at the 

linear junction, the three models in Equation (66) are invariant and are equivalent to each other. ∎ 

 

1.2 Averaged models and their properties  

Due to the existence of traffic signal, the junction flux in Equation (66) periodically switches 

between zero and certain nonzero values, for example, the saturation flow-rate.  Here, we first derive the 

averaged models from Equation (66) to eliminate such a cyclic pattern, then we analyze their properties 

using CTM simulations. 

1.2.1 Averaged models 

According to (Sanders et al., 2007), when a parameter in a system equation is periodic, we can 

simplify the system dynamics by averaging the parameter over its period. Since 𝛿𝛿(𝑡𝑡) in Equation (66) is 𝑇𝑇-

periodic, its average can be computed as  

 
𝛿𝛿̅ =

1
T
� δ(s)ds
𝑇𝑇

0
= η. (68) 

Therefore, the three averaged models can be derived from Equation (66), which are formulated as follows:  

 q = 𝐹𝐹�1(D1, S2;η) = η min{D1, S2}                                    (a) 

q = 𝐹𝐹�2(D1, S2;η) = min{ηD1, S2}                                    (b) 
(69) 
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q = 𝐹𝐹�3(D1, S2;η) = min{D1,ηS2}                                    (c) 

Correspondingly, their local forms are  

 q = f1(D1(0−, t), S2(0+, t);η) = ηmin{D1(0−, t), S2(0+, t)}             (a) 

q = f2(D1(0−, t), S2(0+, t);η) = min{ηD1(0−, t), S2(0+, t)}             (b) 

q = f3(D1(0−, t), S2(0+, t);η) = min{D1(0−, t), ηS2(0+, t)}             (c) 

(70) 

With Equation (70), the signalized linear junction is changed into an un-signalized one with a different local 

flux function  𝑞𝑞 = 𝑓𝑓𝑖𝑖(𝐷𝐷1(0−, 𝑡𝑡), 𝑆𝑆2(0+, 𝑡𝑡); 𝜂𝜂), 𝑖𝑖 ∈ {1,2,3}, at 𝑥𝑥 = 0. 

1.2.2 Properties 

In Figure 11, we provide average junction fluxes for the three averaged models in Equation (69) 

under constant loading scenarios (with fixed boundary demand and supply). The CTM simulation is used. 

Each link is 0.5mile long and is partitioned into 10 cells. The free-flow speed 𝑣𝑣𝑓𝑓 is 60 mph, and thus the 

updating time interval Δ 𝑡𝑡 is 3 seconds with  𝐶𝐶𝐶𝐶𝐶𝐶 = 1. The critical density 𝑘𝑘𝑐𝑐 is 30 vpmpl and the jam 

density is 150 vpmpl, and therefore, the capacity 𝐶𝐶 is 1800 vphpl. The simulation time is 0.5 hr, which is 

long enough to allow traffic to reach a stationary state. Initially, all links are empty. 

 

(a) 2𝐶𝐶1 = 𝐶𝐶2 = 3600vph, 𝐷𝐷1 = 0.9𝐶𝐶1, 𝑆𝑆2 = 0.5𝐶𝐶2, and 𝜂𝜂 = 0.4 
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(b) 𝐶𝐶1 = 2𝐶𝐶2 = 3600vph, 𝐷𝐷1 = 0.5𝐶𝐶1, 𝑆𝑆2 = 0.9𝐶𝐶2, and 𝜂𝜂 = 0.4 

Figure 11 Properties of the three time-average models in Equation (69). 

The firs case is when the upstream link has one lane but the downstream one has two. The upstream 

demand is 0.9𝐶𝐶1, and the downstream supply is 0.5𝐶𝐶2. At the signalized junction, the green ratio 𝜂𝜂 is 0.4. 

In this case, we can find that both the upstream demand and downstream supply are greater than the 

maximum number of vehicles that can enter the intersection, i.e., min{𝐷𝐷1,𝑆𝑆2}  > 𝜂𝜂max{𝐶𝐶1,𝐶𝐶2} . As 

illustrated in Figure 11(a), under stationary traffic conditions, the third model (Equation (69c)) provides a 

different average junction flux from the one provided by the first (Equation (69a)) and the second models 

(Equation (69b)): the average junction flux 𝑞𝑞 is 1440 vph (𝜂𝜂 𝐶𝐶2) for the third model, while it is 720 vph 

(𝜂𝜂𝐶𝐶1) for the first and the second ones. However, a different situation occurs when the upstream link has 

two lanes but the downstream one has only one. In this case, the upstream demand is 0.5𝐶𝐶1, and the 

downstream supply is 0.9𝐶𝐶2 . The green ratio remains 0.4. As illustrated in Figure 11(b), the average 

junction flux of the second model converges to 𝑞𝑞 = 𝜂𝜂𝐶𝐶1 = 1440 vph, while it converges to 𝑞𝑞 = 720 vph 

for the first and the third models. Obviously, given different road geometries and traffic conditions, these 

three models return different average junction fluxes. More importantly, it is hard to tell which one is correct 

since they are derived from the three forms with binary signals in Equation (66), which have been proven 

to be equivalent in Theorem 3. 
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2.  Invariant average models 

In this section, we will first introduce the network kinematic wave model, which include both link 

models and junction models. Within this framework, we will solve the Riemann problems arising at the 

junctions and obtain the invariant averaged models. 

2.1 Network kinematic wave model 

2.1.1 Link models 

Generally speaking, link models for freeways can be applied to arterial networks. In kinematic 

wave theory, traffic is modeled as a continuous media. Traffic flow variables such as flow-rate 𝑞𝑞𝑎𝑎(𝑥𝑥, 𝑡𝑡), 

speed 𝑣𝑣𝑎𝑎(𝑥𝑥, 𝑡𝑡), and density 𝑘𝑘𝑎𝑎(𝑥𝑥, 𝑡𝑡) are usually used to describe the state at (x,t) of link 𝑎𝑎 . With the 

assumption of a traffic flow fundamental diagram,𝑞𝑞𝑎𝑎 = 𝑄𝑄(𝑘𝑘𝑎𝑎), the following LWR model (Lighthill and 

Whitham, 1955; Richards, 1956) is used to describe the traffic dynamics on link 𝑎𝑎: 

 ∂ka(x, t)
∂t

+
∂Q�ka(x, t)�

∂x
= 0 (71) 

In (Daganzo, 1994), a so-called Cell Transmission Model (CTM) was introduced to numerically 

solve Equation (71) using the Godunov method (Godunov, 1959): (i) a link is partitioned into cells with 

equal length of Δ𝑥𝑥, and (ii) the time is divided into intervals with equal duration of Δ𝑡𝑡. The selection of Δ𝑥𝑥 

and Δ𝑡𝑡 strictly follows the CFL condition (Courant et al., 1928) that requires a vehicle cannot travel across 

a cell (longer than Δ𝑥𝑥) during time Δ𝑡𝑡. A cell's density at every time step Δ𝑡𝑡 is updated according to the 

difference of its boundary fluxes. 

However, using the discrete version of the CTM (Daganzo, 1994, 1995), it is impossible to obtain 

analytical results, for example, traffic stationary states, in the network. Therefore, in (Jin et al., 2009; Jin, 

2010, 2014a, 2012a), a continuous version of the CTM that allows the cell size Δ𝑥𝑥 and the time step Δ𝑡𝑡 

approach to zero was proposed. Different from the discrete version in (Daganzo, 1994, 1995), the demand 

and supply pair, 𝑈𝑈𝑎𝑎(𝑥𝑥, 𝑡𝑡) = (𝐷𝐷𝑎𝑎(𝑥𝑥, 𝑡𝑡), 𝑆𝑆𝑎𝑎(𝑥𝑥, 𝑡𝑡)), is used as the state variable. In the continuous formulation, 

Riemann problems with jump initial conditions are found and analytically solved in the supply-demand 

space. Through the analysis, it is shown that stationary states exist and will eventually dominate the traffic 
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conditions on the link after some time. Meanwhile, there exist interior states that take infinitesimal space 

in the continuous formulation and only occupy one cell in the numerical solution. 

2.1.2 Junction models 

For signalized intersections, time-dependent binary variables are usually used to mimic the control 

logic of green-red intervals. Then for a given green interval, junction models for freeways can be applied 

to assign the traffic from the upstream approaches to the downstream ones. Examples of such junction 

models are provided in Equation (66) with the local forms in Equation (67). Furthermore, if we consider 

the averaged performance of traffic, we can use averaged models to eliminate the cyclic patterns of signal 

control. Examples of such junction models are provided in Equation (69) with the local forms in Equation 

(70).  

The above two types of models can be applied at the junction together with the link models to 

update the boundary fluxes and the corresponding densities, which as a result forms the network kinematic 

wave model. 

2.2 Derivation of invariant averaged models 

In this subsection, we will combine the continuous CTM (Jin et al., 2009; Jin, 2010, 2014a, 2012a) 

together with the averaged models in Equation (69). From that, we will solve the Riemann problems and 

obtain the invariant forms of the averaged models. 

2.2.1 Riemann Problems 

In the continuous CTM, as demonstrated in (Jin et al, 2009), there exist three types of traffic states 

on an infinitely-long road link: 

• Initial states: 𝑈𝑈1 = (𝐷𝐷1,𝑆𝑆1) and 𝑈𝑈2 = (𝐷𝐷2, 𝑆𝑆2); 

• Stationary states: 𝑈𝑈1− = (𝐷𝐷1−, 𝑆𝑆1−) and 𝑈𝑈2+ = (𝐷𝐷2+,𝑆𝑆2+});  

• Interior states: 𝑈𝑈1(0−, 𝑡𝑡) = (𝐷𝐷1(0−, 𝑡𝑡), 𝑆𝑆1(0−, 𝑡𝑡)) and 𝑈𝑈2(0+, 𝑡𝑡) = (𝐷𝐷2(0+, 𝑡𝑡), 𝑆𝑆2(0+, 𝑡𝑡)). 

As an example, the locations of these traffic states at the signalized linear junction are provided in Figure 

10. Correspondingly, we have the following three types of Riemann problems: 
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• Type I: the Riemann problem between 𝑈𝑈1 and 𝑈𝑈1−, or between 𝑈𝑈2 and 𝑈𝑈2+; 

• Type II: the Riemann problem between 𝑈𝑈1(0−, 𝑡𝑡) and 𝑈𝑈1−, or between 𝑈𝑈2(0+, 𝑡𝑡) and 𝑈𝑈2+; 

• Type III: the Riemann problem between 𝑈𝑈1(0−, 𝑡𝑡) and 𝑈𝑈2(0+, 𝑡𝑡). 

To uniquely solve the above Riemann problems, we need to introduce the following two entropy conditions. 

The first one is the constraints on wave directions inside a link: (i) the Riemann problem between 𝑈𝑈1 and 

𝑈𝑈1− can not have positive waves, while the Riemann problem between 𝑈𝑈2 and 𝑈𝑈2+ can not have negative 

waves; (ii) the Riemann problem between 𝑈𝑈1(0−, 𝑡𝑡)  and 𝑈𝑈1−  can not have negative waves, while the 

Riemann problem between 𝑈𝑈2(0+, 𝑡𝑡) and 𝑈𝑈2+ can not have positive waves. The second entropy condition 

is driver's macroscopic behaviors such as fair merging and First-In-First-Out (FIFO) at the junction, e.g., 

Equation (70). 

2.2.2 Solutions 

Lemma 4 

With Equation (70a) applied as the entropy condition at the signalized linear junction, stationary and 

interior states can take the following values: 

[1] When 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷1,𝑆𝑆2} > 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2}, 

 𝑈𝑈1− = 𝑈𝑈1(0−, 𝑡𝑡) = (𝐶𝐶1,𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2}), and 𝑈𝑈2+ = 𝑈𝑈2(0+, 𝑡𝑡) = (𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2} ,𝐶𝐶2). 

[2] When 𝐷𝐷1 < 𝑆𝑆2 and 𝐷𝐷1 ≤ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2},  

𝑈𝑈1− = (𝐷𝐷1,𝐶𝐶1), 𝑈𝑈1(0−, 𝑡𝑡) = (𝐷𝐷1/𝜂𝜂,𝐶𝐶1) , and 𝑈𝑈2+ = 𝑈𝑈2(0+, 𝑡𝑡) = (𝐷𝐷1,𝐶𝐶2). 

[3] When 𝐷𝐷1 > 𝑆𝑆2 and 𝑆𝑆2 ≤ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2},  

𝑈𝑈1− = 𝑈𝑈1(0−, 𝑡𝑡) = (𝐶𝐶1,𝑆𝑆2), 𝑈𝑈2+ = (𝐶𝐶2,𝑆𝑆2), and 𝑈𝑈2(0+, 𝑡𝑡) = (𝐶𝐶2,𝑆𝑆2/𝜂𝜂). 

[4] When 𝑆𝑆2 = 𝐷𝐷1 ≤ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2}, 𝑈𝑈1− = (𝐷𝐷1,𝐶𝐶1), and 𝑈𝑈2+ = (𝐶𝐶2,𝑆𝑆2).  

a) If 𝑈𝑈2(0+, 𝑡𝑡) = (𝐶𝐶2,𝑆𝑆2/𝜂𝜂) , 𝑈𝑈1(0−, 𝑡𝑡) = (𝐷𝐷1(0−, 𝑡𝑡), 𝑆𝑆1(0−, 𝑡𝑡))  with 𝑆𝑆1(0−, 𝑡𝑡) ≥ 𝐷𝐷1  and 

𝐷𝐷1(0−, 𝑡𝑡) ≥ 𝐷𝐷1/𝜂𝜂. 

b) If 𝑈𝑈1(0−, 𝑡𝑡) = (𝐷𝐷1/𝜂𝜂,𝐶𝐶1) , 𝑈𝑈2(0+, 𝑡𝑡) = (𝐷𝐷2(0+, 𝑡𝑡), 𝑆𝑆2(0+, 𝑡𝑡))  with 𝑆𝑆2(0+, 𝑡𝑡) ≥  𝑆𝑆2/𝜂𝜂  and 

𝐷𝐷2(0+, 𝑡𝑡) ≥ 𝑆𝑆2. 
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The proof is provided in Appendix A. 

At the signalized linear junction, the junction flux can be calculated from the stationary states. Then 

according to Lemma 4, we have the following theorem: 

 

Theorem 5 

With Equation (70a) applied as the entropy condition at the signalized linear junction, the junction flux can 

take the following values: 

[1] When 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷1,𝑆𝑆2} > 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2}, 𝑞𝑞 = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2}. 

[2] When 𝐷𝐷1 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑆𝑆2,𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2}}, 𝑞𝑞 = 𝐷𝐷1. 

[3] When 𝑆𝑆2 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷1,𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶1,𝐶𝐶2}},  𝑞𝑞 = 𝑆𝑆2. 

Therefore, the global averaged model can be written as 

 𝑞𝑞 = 𝐹𝐹�1(𝐷𝐷1,𝑆𝑆2;𝜂𝜂) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷1,𝑆𝑆2,𝜂𝜂𝐶𝐶1,𝜂𝜂𝐶𝐶2} (72) 

The proof is simple and thus is omitted here. 

 

Corollary 6 

The global averaged model in Equation (72) is invariant. 

Proof: If we apply the following local averaged model as the entropy condition at the signalized junction, 

 q = 𝑓𝑓1(D1(0−, t), S2(0+, t);η) = min{D1(0−, t) , S2(0+, t), ηC1,ηC2} (73) 

We can derive the same averaged model in Equation (72). According to Definition 1, Equation (72) is 

invariant since it has the same structure as Equation (73). ∎ 

 

Theorem 7 

With Equations (70b) and (70c) applied as the entropy conditions at the signalized linear junction, we can 

derive the following invariant averaged models: 

 For Equation (70b)          𝑞𝑞 = 𝐹𝐹�2(𝐷𝐷1,𝑆𝑆2;𝜂𝜂) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷1,𝑆𝑆2,𝜂𝜂𝐶𝐶1}              (a) (74) 
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For Equation (70c)           𝑞𝑞 = 𝐹𝐹�3(𝐷𝐷1,𝑆𝑆2;𝜂𝜂) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷1,𝑆𝑆2,𝜂𝜂𝐶𝐶2}              (b) 

Proof: Similar to the proof in Lemma 4, we can derive Equation (74) from Equations (70b) and (70c). 

Furthermore, if we apply the following local averaged models as entropy conditions at the signalized 

junction, 

 q = 𝑓𝑓2(D1(0−, t), S2(0+, t); η) = min{D1(0−, t), S2(0+, t), ηC1} 

q = 𝑓𝑓3(D1(0−, t), S2(0+, t);η) = min{D1(0−, t) , S2(0+, t), ηC2} 
(75) 

we can derive the same averaged models in Equation (74). Therefore, Equation (74) is invariant.∎ 

 

Corollary 8 

For the averaged models in Equation (69), they are non-invariant but have the same invariant forms in 

Equations (72) and (74). 

Proof: For the averaged models in Equation (69), their local forms are provided in Equation (70). According 

to Theorem 5 and Theorem 7, the derived invariant forms are different from those in Equation (69), and 

therefore, the models in Equation (69) are non-invariant.∎ 

3. Comparison of averaged models 

3.1 Constraint of maximum average junction flux  

After deriving the invariant averaged models, we are able to identify their correctness by applying 

the constraint of maximum average junction flux. When the capacities of the upstream and downstream 

links are the same, the invariant averaged models in Equations (72) and (74) are identical. However, they 

have different properties when the upstream and downstream capacities are different. Then we have the 

following theorem. 

 

Theorem 9 

The invariant averaged models in Equation (74) are incorrect since they fail to meet the constraint of 

maximum average junction flux when the capacities of the upstream and downstream links are different. 

That is to say, the invariance property of an average model does not guarantee its correctness. 
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Proof: For the signalized linear junction, we have the following two capacity combinations for the upstream 

and downstream links. 

• C1: 𝑪𝑪_𝟏𝟏 < 𝑪𝑪_𝟐𝟐.  

In this case, Equation (72) and is the same as Equation (74a). In Figure 12(a) and Figure 12(b), we 

provide the solutions of stationary states for the three invariant averaged models with 𝐶𝐶1 < 𝐶𝐶2 in 

the 𝐷𝐷1 − 𝑆𝑆2 space. Red dots indicate initial states, while blue ones indicate stationary states. We 

find that when 𝐷𝐷1 ≤ 𝜂𝜂𝐶𝐶1 or 𝑆𝑆2 ≤ 𝜂𝜂𝐶𝐶1, the solutions of stationary states (i.e., the average junction 

fluxes) are the same for these three models. However, when both 𝐷𝐷1 and 𝑆𝑆2 are greater than 𝜂𝜂𝐶𝐶1, 

the stationary states for the three models are different. It is found that the average junction flux is 

bounded by the upstream capacity constraint 𝜂𝜂𝐶𝐶1 for the models in Equations (72) and (74a), while 

it is bounded by min{𝜂𝜂𝐶𝐶2,𝐶𝐶1} for the model in Equation (74b). 

 

With the signal control in Equation (66), when the downstream supply is high enough to 

accommodate all upstream vehicles during the effective green time, the maximum junction flux is 

equal to the upstream capacity. But it reduces to zero when the traffic light turns red.  Therefore, 

the maximum average junction flux can only be 𝜂𝜂𝐶𝐶1.  The average junction flux from Equation 

(74b) is higher than this value, which means Equation (74b) fails to capture the upstream capacity 

constraint.  

• C2: 𝑪𝑪𝟏𝟏 > 𝑪𝑪𝟐𝟐. 

 In this case, Equation (72) is the same as Equation (74b). Similarly, we provide the solutions of 

stationary states for the three averaged models with 𝐶𝐶2 < 𝐶𝐶1 in Figure 12(c) and Figure 12(d). We 

find that these three models are the same when 𝐷𝐷1 ≤ 𝜂𝜂𝐶𝐶2 or 𝑆𝑆2 ≤ 𝜂𝜂𝐶𝐶2. However, they are different 

when both 𝐷𝐷1 and 𝑆𝑆2 are greater than 𝜂𝜂𝐶𝐶2. In this case, the average junction flux is bounded by 

min{𝜂𝜂𝐶𝐶1,𝐶𝐶2} for the model in Equation (74a) and by the downstream capacity constraint 𝜂𝜂𝐶𝐶2 for 

the models in Equations (72) and (74b). 
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With the signal control in Equation (66), when the upstream demand is high enough to fully use 

the effective green time in each cycle, the maximum junction flux is equal to the downstream 

capacity. Again, due to the existence of red interval, the junction flux is zero for 1 − 𝜂𝜂 of the cycle. 

Therefore, the maximum average junction flux can only be 𝜂𝜂𝐶𝐶2.  The average junction flux from 

Equation (74a) is higher than this value, which means Equation (74a) fails to capture the 

downstream capacity constraint.  

From the above analysis, we find that only the invariant averaged model in Equation (72) can meet the 

constraint of maximum average junction flux at the signalized linear junction. The invariant averaged 

models in Equation (74) are incorrect since they fail to meet this constraint when the capacities of the 

upstream and downstream links are different. ∎ 

 

         (a) 𝐶𝐶1 <  𝐶𝐶2 and 𝑞𝑞 = min{𝐷𝐷1, 𝑆𝑆2,𝜂𝜂𝐶𝐶1}                       (b) 𝐶𝐶1 <  𝐶𝐶2 and 𝑞𝑞 = min{𝐷𝐷1,𝑆𝑆2,𝜂𝜂𝐶𝐶2} 
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           (c) 𝐶𝐶1 > 𝐶𝐶2 and 𝑞𝑞 = min{𝐷𝐷1,𝑆𝑆2,𝜂𝜂𝐶𝐶1}                      (d) 𝐶𝐶1 > 𝐶𝐶2 and 𝑞𝑞 = min{𝐷𝐷1,𝑆𝑆2,𝜂𝜂𝐶𝐶2} 

Figure 12 Solutions of stationary states for the three invariant averaged models. 

 

3.2 Another average model 

In (Han et al., 2014), an averaged model was proposed for a signalized merging junction with the 

consideration of effective supplies in the downstream. If one of the upstream links is empty and has zero 

demand, the signalized merging junction is changed into the signalized linear junction shown in Figure 10. 

Then the averaged model in (Han et al., 2014) is simplified as  

 q = 𝐹𝐹�4(D1, S2;η) = min{D1, η S2′ } = min{D1,ηS2,ηC1} (76) 

Here, 𝑆𝑆2′  is the effective supply and is defined as 𝑆𝑆2′ = min{𝑆𝑆2,𝐶𝐶1}. Correspondingly, its local form at 𝑥𝑥 =

0 is 

 q = f4(D1(0−, t), S2(0+, t); η) = min{D1(0−, t), ηS2(0+, t), ηC1} (77) 

 

Theorem 10 

The averaged model in Equation (76) is non-invariant but has the same invariant form as Equation (72). 

That means different non-invariant averaged models can have the same invariant form. 
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Proof: With the entropy condition in Equation (77) applied at the signalized junction, we can get the 

following stationary and interior states: 

• When min{𝐷𝐷1,𝑆𝑆2} > 𝜂𝜂min{𝐶𝐶1,𝐶𝐶2},  

𝑈𝑈1− = 𝑈𝑈1(0−, 𝑡𝑡) = (𝐶𝐶1,𝜂𝜂min{𝐶𝐶1,𝐶𝐶2}), and 𝑈𝑈2+ = 𝑈𝑈2(0+, 𝑡𝑡) = (𝜂𝜂min{𝐶𝐶1,𝐶𝐶2} ,𝐶𝐶2). 

• When 𝐷𝐷1 < 𝑆𝑆2 and 𝐷𝐷1 ≤ 𝜂𝜂min{𝐶𝐶1,𝐶𝐶2}, 

𝑈𝑈1− = 𝑈𝑈1(0−, 𝑡𝑡) = (𝐷𝐷1,𝐶𝐶1), and 𝑈𝑈2+ = 𝑈𝑈2(0+, 𝑡𝑡) = (𝐷𝐷1,𝐶𝐶2). 

• When 𝐷𝐷1 > 𝑆𝑆2 and 𝑆𝑆2 ≤ 𝜂𝜂min{𝐶𝐶1,𝐶𝐶2},  

𝑈𝑈1− = 𝑈𝑈1(0−, 𝑡𝑡) = (𝐶𝐶1,𝑆𝑆2), 𝑈𝑈2+ = (𝐶𝐶2,𝑆𝑆2), and 𝑈𝑈2(0+, 𝑡𝑡) = (𝐶𝐶2, 𝑆𝑆2
𝜂𝜂

) . 

• When 𝑆𝑆2 = 𝐷𝐷1 ≤ 𝜂𝜂min{𝐶𝐶1,𝐶𝐶2}, 𝑈𝑈1− = (𝐷𝐷1,𝐶𝐶1), and 𝑈𝑈2+ = (𝐶𝐶2,𝑆𝑆2).  

a) If 𝑈𝑈2(0+, 𝑡𝑡) = (𝐶𝐶2, 𝑆𝑆2
𝜂𝜂

) , 𝑈𝑈1(0−, 𝑡𝑡) = (𝐷𝐷1(0−, 𝑡𝑡), 𝑆𝑆1(0−, 𝑡𝑡)) with 𝑆𝑆1(0−, 𝑡𝑡) ≥ 𝐷𝐷1  and 

𝐷𝐷1(0−, 𝑡𝑡) ≥ 𝐷𝐷1. 

b) If 𝑈𝑈1(0−, 𝑡𝑡) = (𝐷𝐷1,𝐶𝐶1) , 𝑈𝑈2(0+, 𝑡𝑡) = (𝐷𝐷2(0+, 𝑡𝑡), 𝑆𝑆2(0+, 𝑡𝑡))  with 𝑆𝑆2(0+, 𝑡𝑡) ≥ 𝑆𝑆2
𝜂𝜂

 and 

𝐷𝐷2(0+, 𝑡𝑡) ≥  𝑆𝑆2. 

c) If 𝐷𝐷1 = 𝑆𝑆2 = 𝜂𝜂𝐶𝐶1 , 𝑈𝑈1(0−, 𝑡𝑡) = (𝐷𝐷1(0−, 𝑡𝑡), 𝑆𝑆1(0−, 𝑡𝑡)) with 𝑆𝑆1(0−, 𝑡𝑡) ≥  𝐷𝐷1  and 𝐷𝐷1(0−, 𝑡𝑡) ≥

𝐷𝐷1; 𝑈𝑈2(0+, 𝑡𝑡) = (𝐷𝐷2(0+, 𝑡𝑡), 𝑆𝑆2(0+, 𝑡𝑡)) with 𝑆𝑆2(0+, 𝑡𝑡) ≥ 𝑆𝑆2
𝜂𝜂

 and 𝐷𝐷2(0+, 𝑡𝑡) ≥ 𝑆𝑆2. 

Based on the stationary states, we can easily derive the invariant averaged model which is the same as 

Equation (72). Note that Equations (69a) and (76) are two different non-invariant averaged models, but 

they have the same invariant form in Equation (72). ∎ 

4. Approximation accuracy on a signalized ring road 

To evaluate the approximation accuracy of the invariant averaged model in Equation (72), we 

consider a signalized ring road shown in Figure 13, which is formed by connecting the downstream exit of 

the signalized junction to its upstream entrance in Figure 10. The ring road is a one-lane roadway with a 

length of 𝐿𝐿. The downstream and the upstream to the signal are labeled as 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿, respectively.  

Initially, vehicles are uniformly distributed along the ring. 
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Figure 13 A signalized ring road. 

4.1 Impacts of initial densities and cycle lengths 

Due to the existence of signal control, it is hard to obtain analytical solutions of traffic stationary 

states on the signalized ring road. Therefore, the CTM simulation (Daganzo, 1994, 1995) is used. The ring 

is one mile long and is equally divided into 150 cells, and thus the updating time step Δ𝑡𝑡 is 0.4s with 𝐶𝐶𝐶𝐶𝐶𝐶 =

1. The triangular fundamental diagram,𝑞𝑞 = 𝑄𝑄𝑡𝑡(𝑘𝑘) = min{𝑣𝑣𝑓𝑓𝑘𝑘,𝑤𝑤(𝑘𝑘𝑗𝑗 − 𝑘𝑘)}, with 𝑣𝑣𝑓𝑓 = 60 mph, 𝑤𝑤 = 15 

mph, and 𝑘𝑘𝑗𝑗 = 150 vpm is used, and therefore, the capacity 𝐶𝐶 is 1800 vph. The total simulation time is 2 

hours, which is considered long enough to allow traffic to reach a stationary state. For the traffic signal, the 

effective green ratio is constant with 𝜂𝜂 = 0.5. 

To unveil the impact of initial densities, we set the cycle length to be constant, e.g., 𝑇𝑇 = 60𝑠𝑠. In 

Figure 14, we show the evolution patterns of junction fluxes under four different initial densities. The blue 

solid lines represent the junction fluxes with signal control. It is clear to see that regardless of the initial 

densities, junction fluxes become periodic after some time, which indicates traffic in the signalized ring 

road has reached a stationary state (Jin et al., 2013). Therefore, average junction fluxes are obtained by 

averaging the periodic ones over the last four cycles and are provided as blue dashed-dotted lines in the 

figure. 

Different from the case with signal control, it is possible to analytically derive all stationary states 

on the signalized ring road with the invariant averaged model in Equation (72). According to (Jin, 2012c), 

there exist three types of stationary states on a road link: strictly under critical (SUC), over critical (OC), 
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and zero-speed shockwave (ZS). When 𝐶𝐶1 = 𝐶𝐶2 = 𝐶𝐶, the entropy condition (Equation (73) at the signalized 

junction is now changed to 𝑞𝑞 = min{𝐷𝐷(𝐿𝐿, 𝑡𝑡), 𝑆𝑆(0, 𝑡𝑡), 𝜂𝜂𝜂𝜂}. Since initially vehicles are uniformly distributed, 

we have 𝑈𝑈(𝑥𝑥, 0) = (𝐷𝐷(𝑥𝑥, 0), 𝑆𝑆(𝑥𝑥, 0)) = (𝐷𝐷(𝐿𝐿, 0),𝑆𝑆(0,0)) for 𝑥𝑥 ∈ [0,𝐿𝐿]. When traffic on the signalized 

ring road is stationary after 𝑡𝑡 >  𝑡𝑡0 ≥ 0, we can have the following possible stationary states: 

• If 𝐷𝐷(𝐿𝐿, 0) ≤ min{𝑆𝑆(0,0),𝜂𝜂𝜂𝜂}, only SUC stationary states can exist with 𝑞𝑞 = 𝐷𝐷(𝐿𝐿, 0). That means 

𝑈𝑈(𝑥𝑥, 𝑡𝑡) = (𝐷𝐷(𝑥𝑥, 𝑡𝑡), 𝑆𝑆(𝑥𝑥, 𝑡𝑡)) = (𝐷𝐷(𝐿𝐿, 0),𝐶𝐶) for 𝑥𝑥 ∈ [0, 𝐿𝐿] and 𝑡𝑡 > 𝑡𝑡0 = 0.  

• If 𝑆𝑆(0,0) ≤ min{𝐷𝐷(𝐿𝐿, 0),𝜂𝜂𝜂𝜂}, only OC stationary states can exist with 𝑞𝑞 = 𝑆𝑆(0, 𝑡𝑡). That means 

𝑈𝑈(𝑥𝑥, 𝑡𝑡) = (𝐷𝐷(𝑥𝑥, 𝑡𝑡), 𝑆𝑆(𝑥𝑥, 𝑡𝑡)) = (𝐶𝐶, 𝑆𝑆(0,0)) for 𝑥𝑥 ∈ [0, 𝐿𝐿] and 𝑡𝑡 > 𝑡𝑡0 = 0.  

• If  𝜂𝜂𝜂𝜂 < min{𝐷𝐷(𝐿𝐿, 0),𝑆𝑆(0,0)}, only ZS stationary states can exists with 𝑞𝑞 = 𝜂𝜂𝜂𝜂. In this case, for 

𝑡𝑡 > 𝑡𝑡0 >  0 , we have 𝑈𝑈(𝑥𝑥, 𝑡𝑡) = (𝐷𝐷(𝑥𝑥, 𝑡𝑡), 𝑆𝑆(𝑥𝑥, 𝑡𝑡)) = (𝜂𝜂𝜂𝜂,𝐶𝐶)  for 𝑥𝑥 ∈ [0,𝛼𝛼𝛼𝛼] , and 𝑈𝑈(𝑥𝑥, 𝑡𝑡) =

(𝐷𝐷(𝑥𝑥, 𝑡𝑡), 𝑆𝑆(𝑥𝑥, 𝑡𝑡)) = (𝐶𝐶, 𝜂𝜂𝜂𝜂) for 𝑥𝑥 ∈ (𝛼𝛼𝛼𝛼, 𝐿𝐿], where 𝛼𝛼 ∈ (0, 1).  

 

Figure 14 Junction fluxes with the same cycle length but different initial densities. 
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We provide the average junction fluxes derived from the invariant averaged model as red dashed 

lines in Figure 14. From the figure, we find that under our current settings, the derived average junction 

fluxes are the same as the averaged ones with signal control. 

Similarly, to unveil the impact of cycle lengths, we set the initial density to be constant, e.g., 𝑘𝑘 =

15vpm. In Figure 15, we show the junction fluxes with four different cycle lengths. From the figure, we 

can find that regardless of the cycle lengths, the junction fluxes under signal control become periodic after 

some time, which confirms that traffic on the signalized ring road has reached a stationary state. However, 

different from Figure 14, we find that with the same initial density, the average junction fluxes derived from 

the invariant averaged model deviate from the ones with signal control as the cycle length increases. Similar 

patterns are also found with other initial densities, which indicates the approximate accuracy is impacted 

by the cycle lengths: long cycle lengths can reduce the approximation accuracy. 

 
Figure 15 Junction fluxes with the same initial density but different cycle lengths. 
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4.2 Differences in the macroscopic fundamental diagram 

In this subsection, we want to analyze the difference between signal control (Equation (66)) and 

the invariant averaged model (Equation (72)) on the macroscopic fundamental diagram (MFD) 

(Geroliminis and Daganzo, 2008). With signal control, the CTM simulation is used, and the cycle length 

varies from 4s to 720s with 𝜂𝜂 = 0.5. The simulation results are provided as circles in Figure 16(a). From 

the figure, we have the following observations: (i) consistent with Figure 15, for a given average network 

density, the average junction flux can take different values, which is related to the cycle length; and (ii) the 

average junction fluxes are bounded inside the shaded region formed by 𝑄𝑄𝑡𝑡(𝑘𝑘), 𝜂𝜂𝑄𝑄𝑡𝑡(𝑘𝑘), and 𝜂𝜂𝜂𝜂, which is 

also shown in the figure. As a comparison, the derived MFD with the invariant averaged model is shown 

as the blue solid line in the figure. We find that the average junction fluxes derived from the invariant 

averaged model are on the upper bound of the MFD with signal control.  

Furthermore, we analyze the property of the invariant averaged model with the Greenshields' 

fundamental diagram (Greenshield et al., 1935), 𝑞𝑞 = 𝑄𝑄𝑔𝑔(𝑘𝑘) = 𝑣𝑣𝑓𝑓𝑘𝑘(1 − 𝑘𝑘
𝑘𝑘𝑗𝑗

), which is a strictly concave 

function. In the CTM simulation, the free-flow speed is 𝑣𝑣𝑓𝑓 = 60 mph, and the jam density is 𝑘𝑘𝑗𝑗 = 150 vpm. 

The cycle length ranges from 4s to 360s. In Figure 16(b), we provide the MFDs with both signal control 

and the invariant averaged model. From the figure, we find that the invariant averaged model is not sensitive 

to the types of fundamental diagrams since similar patterns in Figure 16(a) can be observed in Figure 16(b). 

75



 
(a) With a triangular fundamental diagram 

 
(b) With the Greenshields' fundamental diagram 

Figure 16 Macroscopic fundamental diagrams of the signalized ring road. 

 

5. Extension to a signalized merging junction 

In this section, we will extend the proposed analytical framework to more complicated signalized 

intersections, e.g., a signalized merging junction.  In Figure 17, a 2 × 1 signalized merging junction is 
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provided. Traffic signal is installed at 𝑥𝑥 = 0 . The two upstream links are denoted as links 1 and 2, 

respectively, with 𝑥𝑥 < 0, and the downstream link is denoted as link 3 with 𝑥𝑥 > 0. 

 

Figure 17 A signalized merging junction. 
5.1 Model of binary signals at the merging junction and its averaged counterpart 

5.1.1 Model with binary signals  

For the signal settings at the merging junction, two phases are assigned to the two upstream links: 

phase 1 for link 1 and phase 2 for link 2. The cycle length is denoted as 𝑇𝑇, and each phase has the same lost 

time Δ. The green ratio is denoted as 𝜋𝜋1  for link 1 and 𝜋𝜋2 for link 2. If we consider the yellow and all red 

period is equal to the lost time period, the effective green time is 𝜋𝜋1𝑇𝑇 for link 1 and 𝜋𝜋2𝑇𝑇 for link 2, and 

(𝜋𝜋1 + 𝜋𝜋2)𝑇𝑇 = 𝑇𝑇 − 2Δ. Then the following two indicators are used to describe the periodic signal regulation 

at the signalized merging junction. 

 δ1(t; T,Δ,π1 ) = �1 t ∈ [nT, nT + π1T)
0 otherwise                

                                n ∈ ℕ0,  

δ2(t; T,Δ,π1) = �1 t ∈ [nT + Δ + π1T, (n + 1)T − Δ)
0 otherwise                                           

    n ∈ ℕ0,  

(78) 
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where ℕ0 = {0,1,2,3, . . . }.  With infinitely long links or under the case of fixed boundary demands and 

supplies, the junction fluxes are globally determined by the initial conditions as well as the signal control. 

Therefore, with Equation (78), the junction fluxes can be computed as: 

 qi = Fi �Ui, Uj, U3,δi(t), δj(t)� = δi(t) min{Di, S3} , for i, j = 1,2 and   i ≠  j 

q3 = q1 + q2 
(79) 

At 𝑥𝑥 = 0, the following local form is applied: 

 qi = f i �Ui(0−, t), Uj(0−, t), U3(0+, t), δi(t), δj(t)� 

                     = δi(t) min{Di(0−, t), S3(0+, t)}  for i, j = 1,2 and i ≠ j 

q3 = q1 + q2 

(80) 

Note that, similar to Equation (66a), signal control is applied to both the upstream demands and downstream 

supplies in Equations (7982) and (80).  

5.1.2 The averaged counterpart 

Due to the existence of signal control, the out-fluxes cyclically switch between zero and other non-

zero values, which makes the analytical study of traffic dynamics very difficult. Here, we are going to 

simply this problem by averaging the impact of signal control over time and derive the averaged model for 

the signalized merging junction.  

Since the two indicators (𝛿𝛿1(𝑡𝑡), 𝛿𝛿2(𝑡𝑡)) are T-periodic, traffic control at the merging junction can 

be simplified by averaging them over time 𝑇𝑇 (Sanders et al., 2007). Therefore, we have  

 
𝛿𝛿1̅ =

1
T
� δ1(s)ds
T

0
= π1 

𝛿𝛿2̅ =
1
T
� δ2(s)ds
T

0
= π2 

(81) 

Then we can derive the following averaged model by replacing (𝛿𝛿1(𝑡𝑡), 𝛿𝛿2(𝑡𝑡)) with (𝜋𝜋1,𝜋𝜋2) in Equation 

(79):  

 qi = 𝐹𝐹�i�Ui, Uj, U3,πi,πj� = πi min{Di, S3}  for i, j = 1,2 and i ≠  j 
q3 = q1 + q2 

(82) 

And its local forms at 𝑥𝑥 = 0 is 
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  qi = 𝑓𝑓i�U1(0−, t), U2(0−, t), U3(0+, t),πi,πj� 
                             = πi min{Di(0−, t), S3(0+, t)}      for i, j = 1,2 and i ≠  j 

q3 = q1 + q2 
(83) 

 

5.2 Invariant average model for the signalized merging junction 

For the signalized merging junction in Figure 17 , we assume each link has the same traffic flow 

fundamental diagram, e.g., 𝑞𝑞𝑎𝑎 = 𝑄𝑄(𝑘𝑘𝑎𝑎), 𝑎𝑎 = {1,2,3}, which is a concave function and attains its capacity 

at the critical density 𝑘𝑘𝑎𝑎,𝑐𝑐. The flow-rate 𝑞𝑞𝑎𝑎 vanishes when the road is empty with 𝑘𝑘𝑎𝑎 = 0 or jammed at the 

jam density 𝑘𝑘𝑎𝑎 = 𝑘𝑘𝑎𝑎,𝑗𝑗. To describe the traffic dynamics on these links (𝑥𝑥 ≠ 0), the LWR model in Equation 

(71) is used. Initially vehicles are uniformly distributed along each link, and thus, the initial condition in 

the demand-supply space can be formulated as 

 U1(x, t = 0) = U1 = (D1, S1), x < 0 
U2(x, t = 0) = U2 = (D2, S2), x < 0 
U3(x, t = 0) = U3 = (D3, S3), x > 0 

(84) 

   
5.2.1 Riemann problems 

According to (Jin et al., 2009), traffic on a link can have three different types of states: initial state, 

stationary state, and interior state. For the three links connected to the merging junction, the initial states 

are denoted as 𝑈𝑈𝑖𝑖, 𝑖𝑖 ∈ {1,2,3}. But as time elapses, stationary states, which are denoted as 𝑈𝑈1−, 𝑈𝑈2−, and 𝑈𝑈3+, 

will gradually dominate the traffic conditions on these links and propagate upstream to Links 1 and 2 and 

downstream to Link 3. Meanwhile, interior states, which are denoted as 𝑈𝑈1(0−, 𝑡𝑡), 𝑈𝑈2(0−, 𝑡𝑡), and 𝑈𝑈3(0+, 𝑡𝑡) 

and theoretically only take infinitesimal space, may appear at the merging junction. The locations of these 

three types of states at the merging junction are provided in Figure 17. 

With the existence of these three types of traffic states, we have to solve the following three types 

of Riemann problems: 

• Type I: the Riemann problems between the initial states and the stationary states, e.g., 𝑈𝑈1 

and 𝑈𝑈1−, 𝑈𝑈2 and 𝑈𝑈2−, and 𝑈𝑈3 and 𝑈𝑈3+. 

• Type II: the Riemann problems between the stationary states and the interior states, e.g., 

𝑈𝑈1− and 𝑈𝑈1(0−, 𝑡𝑡), 𝑈𝑈2− and 𝑈𝑈2(0−, 𝑡𝑡), and 𝑈𝑈3+ and 𝑈𝑈3(0+, 𝑡𝑡). 
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• Type III: the Riemann problem among the interior states, e.g., 𝑈𝑈1(0−, 𝑡𝑡), 𝑈𝑈2(0−, 𝑡𝑡) and 

𝑈𝑈3(0+, 𝑡𝑡). 

To uniquely solve the Riemann problems, we need two entropy conditions. The first entropy 

condition is the junction model such as Equation (83) to regulate traffic movements at the junction. The 

second entropy condition is used to restrict the wave speeds on the upstream and downstream links: (i) the 

Riemann problems between 𝑈𝑈𝑖𝑖  and 𝑈𝑈𝑖𝑖−, 𝑖𝑖 = {1,2}, should not have positive waves, while the Riemann 

problem between 𝑈𝑈3 and 𝑈𝑈3+ should not have negative waves; (ii) the Riemann problems between 𝑈𝑈𝑖𝑖− and 

𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) , 𝑖𝑖 = {1,2} , should not have negative waves, while the Riemann problem between 𝑈𝑈3+  and 

𝑈𝑈3(0+, 𝑡𝑡) should not have positive waves. In this case, the admissible conditions for stationary and interior 

states in (Jin, 2010) are valid in this study. 

5.2.2 Solutions 

When the demand for an upstream link 𝑖𝑖 ∈ {1,2} is low, the maximum sending flow is 𝐷𝐷𝑖𝑖. However, 

as the demand increases, a queue may form on that link, and thus, the maximum sending flow is 

𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3}. Therefore, we have the following definition of effective demand. 

 

Definition 11 

Effective demand 

The effective demand for an upstream link 𝑖𝑖 ∈ {1,2} is defined as 

 𝐷𝐷�𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶3} (85) 
 

If both upstream links are congested, vehicles from the upstream will compete for the space in the 

downstream link 3. Due to the existence of traffic signals, we have the following definition of merging 

priority. 

 

Definition 12 

Merging priority 
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The merging priority 𝛼𝛼𝑖𝑖 for link i is defined as  

 𝛼𝛼𝑖𝑖 =
𝜋𝜋𝑖𝑖

𝜋𝜋𝑖𝑖   + 𝜋𝜋𝑗𝑗
     𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖, 𝑗𝑗 = {1,2},𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ≠ 𝑗𝑗, (86) 

which is the percentage of its green time to the total green time. 

 

While solving the Riemann problems arising at the merging junction, possible stationary and 

interior states can be obtained. Then we have the following Lemma. 

 

Lemma 13 

With Equation (83) applied at the signalized merging junction, we can have the following stationary and 

interior states under different traffic conditions.  

[1] When  𝐷𝐷�1 + 𝐷𝐷�2 < 𝑆𝑆3, link 3 is SUC with 𝑈𝑈3+ = 𝑈𝑈3(0+, 𝑡𝑡) = (𝑞𝑞3,𝐶𝐶3), where 𝑞𝑞3 = 𝑞𝑞1 + 𝑞𝑞2. For the 

upstream link 𝑖𝑖 ∈ {1,2}, we have: 

(i)  If 𝐷𝐷𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3},  

link 𝑖𝑖 is UC with 𝑞𝑞𝑖𝑖 = 𝐷𝐷𝑖𝑖, and 𝑈𝑈𝑖𝑖− = (𝐷𝐷𝑖𝑖,𝐶𝐶𝑖𝑖), 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = �𝐷𝐷𝑖𝑖
𝜋𝜋𝑖𝑖

,𝐶𝐶𝑖𝑖�. 

(ii) If 𝐷𝐷𝑖𝑖 > 𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3},  

link 𝑖𝑖 is SOC with 𝑞𝑞𝑖𝑖 = 𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3}, and 𝑈𝑈𝑖𝑖− = 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3}). 

[2] When ∑ 𝐷𝐷�𝑖𝑖𝑖𝑖 ≥  𝑆𝑆3 and  𝐷𝐷�𝑖𝑖 ≥ 𝛼𝛼𝑖𝑖𝑆𝑆3 for 𝑖𝑖 = 1,2, link 3 is OC with 𝑞𝑞3 = 𝑆𝑆3. We have 𝑈𝑈3+ = (𝐶𝐶3,𝑆𝑆3), 

and 𝑈𝑈3(0+, 𝑡𝑡) = (𝐶𝐶3, 𝑆𝑆3
𝜋𝜋1+𝜋𝜋2

). For the upstream link 𝑖𝑖 ∈ {1,2}, it is SOC with 𝑞𝑞𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑆𝑆3 and 𝑈𝑈𝑖𝑖− =

𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐶𝐶𝑖𝑖, 𝑞𝑞𝑖𝑖). 

[3] When  𝐷𝐷�𝑖𝑖  + 𝐷𝐷�𝑗𝑗 ≥ 𝑆𝑆3 and  𝐷𝐷�𝑖𝑖 < 𝛼𝛼𝑖𝑖𝑆𝑆3 for 𝑖𝑖, 𝑗𝑗 = 1,2 and 𝑖𝑖 ≠ 𝑗𝑗, link 3 is OC with 𝑞𝑞3 = 𝑆𝑆3. We have 

𝑈𝑈3+ = (𝐶𝐶3,𝑆𝑆3), and 𝑈𝑈3(0+, 𝑡𝑡) = (𝐷𝐷3(0+, 𝑡𝑡), 𝑆𝑆3(0+, 𝑡𝑡)) with 𝐷𝐷3(0+, 𝑡𝑡) ≥ 𝑆𝑆3.  

For the upstream link 𝑖𝑖, we have 

(i) When 𝐷𝐷𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3}, it is UC with 𝑞𝑞𝑖𝑖 = 𝐷𝐷𝑖𝑖 . Then 𝑈𝑈𝑖𝑖− = (𝐷𝐷𝑖𝑖,𝐶𝐶𝑖𝑖), and 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) =

(𝐷𝐷𝑖𝑖(0−, 𝑡𝑡), 𝑆𝑆𝑖𝑖(0−, 𝑡𝑡)) with 𝐷𝐷𝑖𝑖(0−, 𝑡𝑡) ≥ 𝐷𝐷𝑖𝑖
𝜋𝜋𝑖𝑖

 and 𝑆𝑆𝑖𝑖(0−, 𝑡𝑡) ≥ 𝐷𝐷𝑖𝑖. 
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(ii) When 𝐷𝐷𝑖𝑖 > 𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3}, it is SOC with 𝑞𝑞𝑖𝑖 = 𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3}. Then 𝑈𝑈𝑖𝑖− = 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) =

(𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3}). 

For the upstream link j, we have 

(i) When 𝐷𝐷𝑗𝑗 = 𝑆𝑆3 − 𝐷𝐷�𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖,𝐶𝐶3}, it is UC with 𝑞𝑞𝑗𝑗 = 𝐷𝐷𝑗𝑗 . Then 𝑈𝑈𝑗𝑗− = (𝐷𝐷𝑗𝑗,𝐶𝐶𝑗𝑗), and 

𝑈𝑈𝑗𝑗(0−, 𝑡𝑡) = (𝐷𝐷𝑗𝑗(0−, 𝑡𝑡), 𝑆𝑆𝑗𝑗(0−, 𝑡𝑡)) with 𝐷𝐷𝑗𝑗(0−, 𝑡𝑡) ≥ 𝐷𝐷𝑗𝑗
𝜋𝜋𝑗𝑗

 and 𝑆𝑆𝑗𝑗(0−, 𝑡𝑡) ≥ 𝐷𝐷𝑗𝑗. 

(ii) When 𝐷𝐷𝑗𝑗 ≥  𝑆𝑆3 − 𝐷𝐷�𝑖𝑖  and 𝐷𝐷𝑗𝑗 > 𝜋𝜋𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑗𝑗,𝐶𝐶3}, it is SOC with 𝑞𝑞𝑗𝑗 = 𝑆𝑆3 − 𝐷𝐷�𝑖𝑖 . Then 𝑈𝑈𝑗𝑗− =

𝑈𝑈𝑗𝑗(0−, 𝑡𝑡) = (𝐶𝐶𝑗𝑗, 𝑆𝑆3 − 𝐷𝐷�𝑖𝑖). 

The proof is provided in Appendix B. According to Lemma 13, we can have the following Theorem. 

 

Theorem 14 

Based on the stationary states derived under different traffic conditions in Lemma 13, we can derive the 

following averaged model: 

 𝑞𝑞𝑖𝑖 = 𝐹𝐹�𝑖𝑖(𝑈𝑈𝑖𝑖 ,𝑈𝑈𝑗𝑗 ,𝑈𝑈3,𝜋𝜋𝑖𝑖,𝜋𝜋𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷�𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚{𝑆𝑆3 − 𝐷𝐷�𝑗𝑗,𝛼𝛼𝑖𝑖𝑆𝑆3}} 

𝑞𝑞3 = �𝑞𝑞𝑖𝑖

2

𝑖𝑖=1

 
(87) 

where 𝑖𝑖, 𝑗𝑗 = {1,2}, and  𝑖𝑖 ≠ 𝑗𝑗. 

The proof is simple and thus is omitted here.  

 

Corollary 15 

The averaged model in Equation (87) is invariant. 

Proof: The local form of Equation (87) can be written as 

 𝑞𝑞𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑈𝑈𝑖𝑖(0−, 𝑡𝑡),𝑈𝑈𝑗𝑗(0−, 𝑡𝑡),𝑈𝑈3(0+, 𝑡𝑡),𝜋𝜋𝑖𝑖,𝜋𝜋𝑗𝑗)
= min{𝐷𝐷�𝑖𝑖(0−, 𝑡𝑡), max{𝑆𝑆3(0+, 𝑡𝑡) − 𝐷𝐷�𝑗𝑗(0−, 𝑡𝑡),𝛼𝛼𝑖𝑖𝑆𝑆3(0+, 𝑡𝑡)}} 

𝑞𝑞3 = �  𝑞𝑞𝑖𝑖

2

𝑖𝑖=1

 
(88) 

where 𝑖𝑖, 𝑗𝑗 = 1,2 and 𝑖𝑖 ≠ 𝑗𝑗. Similar to Lemma 13 and Theorem 14, we can derive the same averaged model 

as in Equation (87). According to Definition 2, the averaged model in Equation (87) is invariant.∎ 
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Corollary 16 

The global averaged model in Equation (82) is non-invariant since a different global form in in Equation 

(87) is derived from its local form in Equation (83). 

The proof is simple and thus is omitted here. 

 

Corollary 17 

The invariant averaged model for the signalized linear junction (Equation (72)) is a special case of the 

one for the signalized merging junction (in Equation (87)) with empty demand in one of the upstream 

links. 

The proof is simple and thus is omitted here. 
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PART IV: Conclusions and future research directions 

In the first part of this report, we provided a comprehensive review on the traffic flow models and 

signal control strategies for urban traffic networks. We reviewed several different traffic flow models, 

including the CTM, the store-and-forward model, the LTM, the LQM, and the VCM. We decided to pick 

the CTM as the simulation tool in our study since as a discrete version of the LWR model, a number of 

studies on both freeway and urban networks have shown that the CTM can replicated the real-world traffic 

dynamics such as the formation, propagation, and dissipation of queues arising at the network junctions. 

We provided a review on traditional signal control strategies which mostly relied on the formulation of 

Webster’s delay or the bandwidth concepts. But we focused more on the signal control strategies on the 

CTM with a summary on the following aspects: the network representations, the junction models, the 

objective functions, and the optimization methods. 

In reality, in order to handle multiple conflicting traffic movements, the network topology at 

signalized intersections can be very complicated and vary a lot. Therefore, the cell presentations and 

junction models in the CTM vary a lot in existing studies. Some consider simple road networks, and thus 

the regular one-dimension cell presentation and simple network junction models are enough. Others 

consider more complicated traffic behavior such as land blockages caused by queue spillbacks or by the 

conflicting left-turn and through movements. In this case, the concepts of sub-zones and sub-cells are 

introduced to model more detailed traffic movements at the signalized intersection.  

For the application of signal control with the CTM, the objective function also varies in existing 

studies. Most of the studies are focused on the delay minimization such as the network delay, excess delay, 

or a combination of delay and early arrival flow, while others consider to minimize the performance index 

or to maximize the network throughput. The optimization problem in the CTM in signalized networks 

normally can be formulated as a MILP problem. For small networks, commercial application software such 

as CPLEX can be used to solve such a problem. However, as the network becomes larger and more 

complicated, it becomes more difficult to solve the MILP problem. Therefore, most of the existing studies 
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use heuristic methods to solve it.  The genetic algorithm is the most popular heuristic method in existing 

studies to find a good, rather than an optimal set of signal settings. But there also have some studies using 

other methods such as the linear relaxation and the hill-climbing method to solve the optimization problem.  

According to our review, the major issue in the signal optimization of large-scale networks is the 

increasing amount of binary variables, which are used to mimic the on-and-off pattern of signal control. 

Therefore, in the second part of this report, we provided a systematic and comprehensive study on deriving 

and analyzing invariant averaged models for signalized junctions. Particularly, as the starting point, we 

used the signalized linear junction as an example. We first introduced three models with binary signals and 

derived their averaged counterparts by replacing the cyclic, binary signal control with an average ratio, 

which is the effective green ratio. However, simulations in the CTM demonstrated that these time-average 

models return different average junction fluxes under different road geometries and traffic conditions. 

Therefore, we derived their invariant models by applying their local forms as entropy conditions at the 

junction and solving the arising Riemann problems. Using the derived invariant averaged models, we were 

able to identify their correctness under the constraint of maximum average junction flux. We showed that 

only one of the three invariant forms is correct since the other two fail to capture the upstream or the 

downstream capacity constraint. That also showed that invariance does not necessarily guarantee 

correctness. We also found that different non-invariant models can lead to the same invariant form. 

Furthermore, we ran CTM simulations on a signalized ring road under different settings of cycle lengths, 

traffic conditions, and fundamental diagrams. Results showed that the approximation accuracy is not 

sensitive to the types of fundamental diagrams, and the invariant averaged model provides a reasonable 

proxy to the macroscopic fundamental diagram. However, we found that long cycle lengths degrade the 

approximation accuracy.   

As a further extension, we applied the proposed analytical framework to more complicated 

signalized junctions, e.g., a signalized merging junction. We followed the same procedures as those in the 

signalized linear junction, and proposed one model with binary signals applied to both the upstream 

demands and downstream supplies. Then we derived its averaged model by replacing the cyclic signal 
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control with a constant value, which is the effective green ratio of each upstream link. Different from the 

linear junction, merging behaviors should be considered at the merging junction, and therefore, we proposed 

two new definitions, Effective Demand and Merging Priority. Effective Demand takes into account not 

only the upstream demand, but also the reduced maximum flow-rate caused by the signal control at the 

junction. For the Merging Priority, it is computed as the ratio between the effective green times of the two 

upstream links. With these two new definitions, the derivation process is significantly simplified. By 

introducing the local form of the averaged model as the entropy condition at the merging junction and 

solving the arising Riemann problems, we were able to derive the invariant form of the averaged model. It 

is easy to show that the derived invariant averaged model for the signalized linear junction in Equation (72) 

is a special case of the one in Equation (87) for the signalized merging junction with empty demand in one 

of the upstream links. 

In the future, we can continue our study in the following directions. First, regarding to the 

application of the CTM to more general signalized intersections, currently there is a lack of a general rule 

in discretizing the road links into cells and sub-cells. Also, there is a lack of a general guideline for the use 

of network junction models with signals. 

Second, regarding to the development of invariant averaged models, the current analytical 

framework can be applied to more complicated intersections, e.g., four-way intersections with different 

turning movements. In this case, both merging and diverging behaviors should be properly captured in the 

invariant averaged models. Also, not only the green times, but also the signal phase sequence should be 

considered. Another important issue is to analyze the impact of signal settings and initial conditions on the 

approximation accuracy of the averaged model.  

Third, after the derivation of invariant averaged models, we can form a new framework by 

introducing them into prevailing traffic flow models, e.g., the CTM, the LTM, and even the LQM. 

Numerically, we can run simulations to study the dynamic properties of large-scale urban networks. 

Analytically, we also can try to derive the network stationary states under various traffic states and signal 

settings. Based on these insights, we should be able to develop optimal signal control strategies to 
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dynamically change the signal settings at intersections so as to improve the overall network performance. 

At a more aggregated level, with the application of the averaged model, both freeway and urban networks 

can be modeled as a whole, which enables the potential of integrated traffic management schemes to reduce 

traffic congestion. At the planning level, this new framework can be served as the based network traffic 

flow model to overwrite the traditional link performance functions used in the step of traffic assignment. It 

is expected to have more realistic results and higher computation speeds with this new framework.  
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PART V: Appendices 
 

Appendix A 

Proof of Lemma 4 

We denote  q(U1
−) and q(U2

+) as the fluxes for the Riemann problem of Type I, q1(0−, t) and q2(0+, t) as 

the fluxes for the Riemann problem of Type II, and q as the flux for the Riemann problem of Type III.  

According to the traffic conservation, we have the following equation  

 q = q1(0−, t) = q2(0+, t) = q(U1
−) = q(U2

+) (89) 

To determine the stationary and interior states arising at the signalized linear junction, we use the admissible 

conditions in Section 4 in (Jin et al, 2009). With the entropy condition q = ηmin{D1(0−, t), S2(0+, t)} 

applied at the signalized junction, we can have the following combinations of stationary and interior states: 

[1] When D1 < S2 ≤  C2 , we have U2
+ = U2(0+, t) = (D2

+, C2) since the downstream link is SUC, 

which leads to q = ηmin{D1(0−, t), C2}. 

(a) If the upstream link is SOC, i.e.,U1
− = U1(0−, t) = (C1, S1−), we can have q = S1− = D2

+ =

ηmin{C1, C2}, and D1 > ηmin{C1, C2}.  

(b) If the upstream link is UC, i.e., D1 ≤  S1− = C1 , we have U1
− = (D1, C1) and U1(0−, t) =

(D1(0−, t), S1(0−, t))  with S1(0−, t) ≥ D1
− = D1 . Therefore, we have q = D2

+ =  D1 =

ηmin{D1(0−, t), C2}, which leads to D1(0−, t) = D1
η

 and S1(0−, t) = C1. Since D1(0−, t) ≤

 C1, we have D1 ≤ ηmin{ C1, C2}.  

[2] When S2 < D1 ≤  C1, the upstream link is SOC. Thus we have U1
− = U1(0−, t) = (C1, S1−), which 

leads to q = ηmin{C1, S2(0+, t)}. 

(a) If the downstream link is SUC, i.e., U2
+ = U2(0+, t) = (D2

+, C2), we have q = D2
+ = S1− =

ηmin{C1, C2}. In this case, S2 > ηmin{C1, C2}. 
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(b) If the downstream link is OC, U2
+ = (C2, S2) and U2(0+, t) = (D2(0+, t), S2(0+, t)) with 

D2(0+, t) ≥  S2 . Thus we have q = S2 = S1− = ηmin{C1, S2(0+, t)} , which leads to 

S2(0+, t) = S2
η

 and D2(0+, t) = C2. Since S2(0+, t) ≤  C2, we can have S2 ≤ ηmin{C1, C2}.  

 

[3] When D1 = S2, we have U2
+ = U2(0+, t) = (D2

+, C2) if the downstream link is SUC, which leads 

to q = ηmin{D1(0−, t), C2} and S2 > D2
+. 

(a) If the upstream link is SOC, i.e., U1
− = U1(0−, t) = (C1, S1−) , then  q = S1− = D2

+ =

ηmin{C1, C2}. In this case, we have D1 = S2 > ηmin{C1, C2}.  

(b) If the upstream link is UC, i.e., D1 ≤  S1−, we have U1
− = (D1, C1), which leads to U1(0−, t) =

(D1(0−, t), S1(0−, t)) with S1(0−, t) ≥  D1
−. Since q(U1

−) = D_1, we have q = q(U1
−) = D1, 

which leads to D2
+ = D1. But it is impossible since S2 > D2

+ = D1, which contradicts D1 = S2.  

If the downstream link is OC, U2
+ = (C2, S2) , and U2(0+, t) = (D2(0+, t), S2(0+, t))  with 

D2(0+, t) ≥  S2. Then we have q = ηmin{D1(0−, t), S2(0+, t)}. 

(c) If the upstream link is SOC, i.e., U1
− = U1(0−, t) = (C1, S1−), then  q = S1− = S2, and D1 >

S1−. But it is impossible since we have D1 > S2, which contradicts D1 = S2. 

(d) If the upstream link is UC, i.e., D1 ≤  S1−, we have U1
− = (D1, C1), which leads to U1(0−, t) =

(D1(0−, t), S1(0−, t)) with S1(0−, t) ≥  D1
−. Because q(U1

−) = D1 and q(U2
+) = S2, we have 

q = D1 = S2 . If q = η D1(0−, t) , we have S1(0−, t) = C1  and ηS2(0+, t) ≥ S2 . If  q =

ηS2(0+, t) , we have D2(0+, t) = C2  and ηD1(0−, t) ≥ D1 . Since D1(0−, t) ≤ C1  and 

S2(0+, t) ≤ C2, we have D1 = S2 ≤ ηmin{C1, C2}.∎ 
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Appendix B 

Proof of Lemma 13 

 With the entropy condition in Equation (83) applied at the junction, we can have the following cases: 

[1] When the total effective demand is less than the supply, i.e., ∑ 𝐷𝐷�𝑖𝑖2
𝑖𝑖=1 < 𝑆𝑆3, the downstream link 3 

is SUC since it can accommodate all vehicles from the upstream links. Therefore, we have 𝑈𝑈3+ =

𝑈𝑈3(0+, 𝑡𝑡) = (𝑞𝑞3,𝐶𝐶3). For the entropy condition, it can be written as 

qi = πi min{Di(0−, t), C3}   i = 1,2. 

 Now, let's consider possible states in the upstream links.  

(i) When 𝐷𝐷𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3} for 𝑖𝑖 = 1,2, we have  𝐷𝐷�𝑖𝑖 = 𝐷𝐷𝑖𝑖 and ∑ 𝐷𝐷𝑖𝑖2
𝑖𝑖=1 < 𝑆𝑆3. In this case, 

both upstream links are UC with 𝑈𝑈𝑖𝑖− = (𝐷𝐷𝑖𝑖,𝐶𝐶𝑖𝑖), and 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐷𝐷𝑖𝑖
𝜋𝜋𝑖𝑖

,𝐶𝐶𝑖𝑖). Therefore, 𝑞𝑞𝑖𝑖 =

𝐷𝐷𝑖𝑖, and 𝑞𝑞3 = ∑ 𝐷𝐷𝑖𝑖2
𝑖𝑖=1 . 

(ii) When 𝐷𝐷𝑖𝑖 > 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3} for 𝑖𝑖 = 1,2, we have   𝐷𝐷�𝑖𝑖 = 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3} and 

∑ 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3}2
𝑖𝑖=1  < 𝑆𝑆3. In this case, both upstream links are SOC with 𝑈𝑈𝑖𝑖− =

𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3}). Therefore, 𝑞𝑞𝑖𝑖 = 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3} <  𝐷𝐷𝑖𝑖, and 𝑞𝑞3 =

∑ 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3}2
𝑖𝑖=1  . 

(iii) When 𝐷𝐷𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3} and 𝐷𝐷𝑗𝑗 > 𝜋𝜋𝑗𝑗 min{𝐶𝐶𝑗𝑗,𝐶𝐶3} for 𝑖𝑖 ≠  𝑗𝑗 and 𝑖𝑖, 𝑗𝑗 = 1,2, we 

have  𝐷𝐷�𝑖𝑖 = 𝐷𝐷𝑖𝑖,  𝐷𝐷�𝑗𝑗 = 𝜋𝜋𝑗𝑗 min{𝐶𝐶𝑗𝑗,𝐶𝐶3}, and 𝐷𝐷𝑖𝑖 + 𝜋𝜋𝑗𝑗 min{𝐶𝐶𝑗𝑗,𝐶𝐶3} < 𝑆𝑆3. In this case, link 𝑖𝑖 is 

UC with 𝑈𝑈𝑖𝑖− = (𝐷𝐷𝑖𝑖,𝐶𝐶𝑖𝑖) and 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐷𝐷𝑖𝑖
𝜋𝜋𝑖𝑖

,𝐶𝐶_𝑖𝑖), and link 𝑗𝑗 is SOC with 𝑈𝑈𝑗𝑗− =

𝑈𝑈𝑗𝑗(0−, 𝑡𝑡) = (𝐶𝐶𝑗𝑗,𝜋𝜋𝑗𝑗 min{𝐶𝐶𝑗𝑗,𝐶𝐶3}). Therefore, 𝑞𝑞𝑖𝑖 = 𝐷𝐷𝑖𝑖, 𝑞𝑞𝑗𝑗 = 𝜋𝜋𝑗𝑗 min{𝐶𝐶𝑗𝑗,𝐶𝐶3} and 𝑞𝑞3 = 𝐷𝐷𝑖𝑖 +

𝜋𝜋𝑗𝑗 min{𝐶𝐶𝑗𝑗,𝐶𝐶3}.  

[2] When  𝐷𝐷�𝑖𝑖 ≥ 𝛼𝛼𝑖𝑖𝑆𝑆3 and  𝐷𝐷�𝑗𝑗 ≥ 𝛼𝛼𝑗𝑗𝑆𝑆3, the total upstream effective demand is higher than the 

downstream supply, i.e., ∑ 𝐷𝐷�𝑖𝑖2
𝑖𝑖=1 ≥ 𝑆𝑆3.  

First, let's show 𝑞𝑞3 = 𝑆𝑆3. If  𝑞𝑞3 < 𝑆𝑆3, link 3 is SUC with 𝑈𝑈3+ = 𝑈𝑈3(0+, 𝑡𝑡) = (𝑞𝑞3 ,𝐶𝐶3). Also, at 

least one of the upstream links (e.g., link 𝑖𝑖) has 𝑞𝑞𝑖𝑖 < 𝐷𝐷�𝑖𝑖. Otherwise, we have 𝑞𝑞3 = 𝑞𝑞1 + 𝑞𝑞2 =
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𝐷𝐷�1 + 𝐷𝐷�2 ≥ 𝑆𝑆3. Without loss of generality, we assume link 𝑖𝑖 is 𝑞𝑞𝑖𝑖 < 𝐷𝐷�𝑖𝑖. Then we have 𝑈𝑈𝑖𝑖− =

𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3}). However, it is impossible to have 𝑞𝑞𝑖𝑖 = 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3} < 𝐷𝐷�𝑖𝑖 =

min{𝐷𝐷𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶3}. Therefore, 𝑞𝑞3 = 𝑆𝑆3. 

 

Second, let's show 𝑞𝑞𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑆𝑆3, for 𝑖𝑖 = 1,2. If 𝑞𝑞𝑖𝑖 < 𝛼𝛼𝑖𝑖𝑆𝑆3 ≤ 𝐷𝐷�𝑖𝑖, we have 𝑞𝑞𝑗𝑗 > 𝛼𝛼𝑗𝑗𝑆𝑆3 since 𝑞𝑞𝑖𝑖 + 𝑞𝑞𝑗𝑗 =

𝑆𝑆3. For link j, we have  

qj = πj min{Dj(0−, t), S3(0+, t)} > αjS3, 

which leads to  𝑆𝑆3(0+, 𝑡𝑡) > 𝑆𝑆3
𝜋𝜋𝑖𝑖+𝜋𝜋𝑗𝑗

. For link 𝑖𝑖, it is SOC, and 𝑈𝑈𝑖𝑖− = 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐶𝐶𝑖𝑖, 𝑞𝑞𝑖𝑖). Because 

𝑆𝑆3(0+, 𝑡𝑡) > 𝑆𝑆3
𝜋𝜋𝑖𝑖+𝜋𝜋𝑗𝑗

 and 𝑞𝑞𝑖𝑖 < 𝛼𝛼𝑖𝑖𝑆𝑆3 ≤ 𝐷𝐷�𝑖𝑖, we have 

  𝑞𝑞𝑖𝑖 = 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖, 𝑆𝑆3(0+, 𝑡𝑡)} = 𝜋𝜋𝑖𝑖𝐶𝐶𝑖𝑖 < 𝛼𝛼𝑖𝑖𝑆𝑆3 ≤  𝐷𝐷�𝑖𝑖 = min{𝐷𝐷𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶_3}, 

 which is impossible. Therefore, 𝑞𝑞𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑆𝑆3, for 𝑖𝑖 = 1,2, and 𝑞𝑞3 = 𝑆𝑆3. 

 

For the stationary and interior states in link 𝑖𝑖, we have 𝑈𝑈𝑖𝑖− = 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐶𝐶𝑖𝑖,𝛼𝛼𝑖𝑖𝑆𝑆3). For the 

stationary and interior states in link 3, we have 𝑈𝑈3+ = (𝐶𝐶3,𝑆𝑆3) and 𝑈𝑈3(0+, 𝑡𝑡) = (𝐶𝐶3 , 𝑆𝑆3
𝜋𝜋𝑖𝑖 +𝜋𝜋𝑗𝑗

).  

  

[3] When  𝐷𝐷�𝑖𝑖 + 𝐷𝐷�𝑗𝑗 ≥ 𝑆𝑆3 and  𝐷𝐷�𝑖𝑖 < 𝛼𝛼𝑖𝑖𝑆𝑆3 for 𝑖𝑖 ≠ 𝑗𝑗 and 𝑖𝑖, 𝑗𝑗 = 1,2. 

First, let's show that 𝑞𝑞3 = 𝑆𝑆3. If 𝑞𝑞3 < 𝑆𝑆3, link 3 is SUC with 𝑈𝑈3+ = 𝑈𝑈3(0+, 𝑡𝑡) = (𝑞𝑞3 ,𝐶𝐶3). 

(a) If 𝑞𝑞𝑖𝑖 = 𝐷𝐷�𝑖𝑖 for 𝑖𝑖 = 1,2, we have 𝑞𝑞3 = ∑ 𝐷𝐷�𝑖𝑖2
𝑖𝑖=1 ≥ 𝑆𝑆3, which is impossible since we assume 

𝑞𝑞3 < 𝑆𝑆3. 

(b) If 𝑞𝑞𝑖𝑖 < 𝐷𝐷�𝑖𝑖 for 𝑖𝑖 = 1,2, link 𝑖𝑖 is SOC with 𝑈𝑈𝑖𝑖− = 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐶𝐶𝑖𝑖, 𝑞𝑞𝑖𝑖). For the entropy 

condition, we have  

  𝑞𝑞𝑖𝑖 = 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3} < 𝐷𝐷�𝑖𝑖 = min{𝐷𝐷𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶3}, 

which is impossible.  
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Therefore, 𝑞𝑞3 = 𝑆𝑆3, and link 3 is OC with 𝑈𝑈3+ = (𝐶𝐶3,𝑆𝑆3), and 𝑈𝑈3 (0+, 𝑡𝑡) =

(𝐷𝐷3(0+, 𝑡𝑡), 𝑆𝑆3(0+, 𝑡𝑡)) with 𝐷𝐷3(0+, 𝑡𝑡) ≥ 𝑆𝑆3. 

 

Second, let's show that 𝑞𝑞𝑖𝑖 = 𝐷𝐷�𝑖𝑖. If 𝑞𝑞𝑖𝑖 < 𝐷𝐷�𝑖𝑖, that means link 𝑖𝑖 is SOC with 𝑈𝑈𝑖𝑖− = 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) =

(𝐶𝐶𝑖𝑖, 𝑞𝑞𝑖𝑖). For the entropy condition, we have  

𝑞𝑞𝑖𝑖 = 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖, 𝑆𝑆3(0+, 𝑡𝑡)} < 𝐷𝐷�𝑖𝑖 = min{𝐷𝐷𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖𝐶𝐶_3} < 𝛼𝛼𝑖𝑖𝑆𝑆3, 

 which leads to 𝑆𝑆3(0+, 𝑡𝑡) < 𝑆𝑆3
𝜋𝜋𝑖𝑖 +𝜋𝜋𝑗𝑗

. For link 𝑗𝑗, we have 

𝑞𝑞𝑗𝑗 = 𝜋𝜋𝑗𝑗 min{𝐷𝐷𝑗𝑗(0−, 𝑡𝑡), 𝑆𝑆3(0+, 𝑡𝑡)} <
𝜋𝜋𝑗𝑗𝑆𝑆3
𝜋𝜋𝑖𝑖 + 𝜋𝜋𝑗𝑗

= 𝛼𝛼𝑗𝑗𝑆𝑆3. 

Therefore, we have 𝑞𝑞3 = ∑ 𝑞𝑞𝑖𝑖2
𝑖𝑖=1 < 𝑆𝑆3, which contradicts 𝑞𝑞3 = 𝑆𝑆3. Therefore, we have 𝑞𝑞𝑖𝑖 = 𝐷𝐷�𝑖𝑖.  

For link j, we have 𝑞𝑞𝑗𝑗 = 𝑆𝑆3 − 𝐷𝐷�𝑖𝑖. 

 

Next, let's discuss about the traffic states on links 𝑖𝑖 and 𝑗𝑗 with 𝑞𝑞𝑖𝑖 = 𝐷𝐷�𝑖𝑖 and 𝑞𝑞𝑗𝑗 = 𝑆𝑆3 − 𝐷𝐷�𝑖𝑖. 

(i) When 𝐷𝐷𝑖𝑖 ≤ 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3}, link 𝑖𝑖 is UC. Then 𝑈𝑈𝑖𝑖− = (𝐷𝐷𝑖𝑖,𝐶𝐶𝑖𝑖), 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) =

(𝐷𝐷𝑖𝑖(0−, 𝑡𝑡), 𝑆𝑆𝑖𝑖(0−, 𝑡𝑡)) with 𝐷𝐷𝑖𝑖(0−, 𝑡𝑡) ≥ 𝐷𝐷𝑖𝑖
𝜋𝜋𝑖𝑖

  and 𝑆𝑆𝑖𝑖(0−, 𝑡𝑡) ≥ 𝐷𝐷𝑖𝑖.  

(ii) When 𝐷𝐷𝑖𝑖 > 𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3}, link 𝑖𝑖 is SOC. Then 𝑈𝑈𝑖𝑖− = 𝑈𝑈𝑖𝑖(0−, 𝑡𝑡) = (𝐶𝐶𝑖𝑖,𝜋𝜋𝑖𝑖 min{𝐶𝐶𝑖𝑖,𝐶𝐶3}). 

(iii) When 𝐷𝐷𝑗𝑗 = 𝑆𝑆3 − 𝐷𝐷�𝑖𝑖 ≤ 𝜋𝜋𝑗𝑗 min{𝐶𝐶𝑗𝑗,𝐶𝐶3}, link 𝑗𝑗 is UC. Then 𝑈𝑈𝑗𝑗− = (𝐷𝐷𝑗𝑗,𝐶𝐶𝑗𝑗), 𝑈𝑈𝑗𝑗(0−, 𝑡𝑡) =

(𝐷𝐷𝑗𝑗(0−, 𝑡𝑡), 𝑆𝑆𝑗𝑗(0−, 𝑡𝑡)) with 𝐷𝐷𝑗𝑗(0−, 𝑡𝑡) ≥ 𝐷𝐷𝑗𝑗
𝜋𝜋𝑗𝑗

 and 𝑆𝑆𝑗𝑗(0−, 𝑡𝑡) ≥ 𝐷𝐷𝑗𝑗.  

(iv) When 𝐷𝐷𝑗𝑗 >  𝑆𝑆3 − 𝐷𝐷�𝑖𝑖 and 𝐷𝐷𝑗𝑗 > 𝜋𝜋𝑗𝑗 min{𝐶𝐶𝑗𝑗,𝐶𝐶3}, link 𝑗𝑗 is SOC. Then 𝑈𝑈𝑗𝑗− = 𝑈𝑈𝑗𝑗(0−, 𝑡𝑡) =

(𝐶𝐶𝑗𝑗, 𝑆𝑆3 − 𝐷𝐷�𝑖𝑖). ∎ 
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